Publikation:

Moving on Twitter : Using Episodic Hotspot and Drift Analysis to Detect and Characterise Spatial Trajectories

Lade...
Vorschaubild

Dateien

Senaratne_0-284011.pdf
Senaratne_0-284011.pdfGröße: 733.99 KBDownloads: 535

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 7th ACM SIGSPATIAL International Workshop on Location-Based Social Networks (LBSN 2014), November 4, 2014, Dallas, Texas, USA. New York, NY: ACM Press, 2014

Zusammenfassung

Today, a tremendous source of spatio-temporal data is user generated, so-called volunteered geographic information (VGI). Among the many VGI sources, microblogged services, such as Twitter, are extensively used to disseminate information on a near real-time basis. Interest in analysis of microblogged data has been motivated to date by many applications ranging from trend detection, early disaster warning, to urban management and marketing. One important analysis perspective in understanding microblogged data is based on the notion of drift, considering a gradual change of real world phenomena observed across space, time, content, or a combination thereof.
The scientific contribution provided by this paper is the presentation of a systematic framework that utilises on the one hand a Kernel Density Estimation (KDE) to detect hotspot clusters of Tweeter activities, which are episodically sequential in nature. These clusters help to derive spatial trajectories. On the other hand we introduce the concept of drift that characterises these trajectories by looking into changes of sentiment and topics to derive meaningful information. We apply our approach to a Twitter dataset comprising 26,000 tweets. We demonstrate how phenomena of interest can be detected by our approach. As an example, we use our approach to detect the locations of Lady Gaga’s concert tour in 2013. A set of visualisations allows to analyse the identified trajectories in space, enhanced by optional overlays for sentiment or other parameters of interest.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

7th ACM SIGSPATIAL International Workshop on Location-Based Social Networks (LBSN 2014), 4. Nov. 2014, Dallas, TX
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SENARATNE, Hansi, Arne BRÖRING, Tobias SCHRECK, Dominic LEHLE, 2014. Moving on Twitter : Using Episodic Hotspot and Drift Analysis to Detect and Characterise Spatial Trajectories. 7th ACM SIGSPATIAL International Workshop on Location-Based Social Networks (LBSN 2014). Dallas, TX, 4. Nov. 2014. In: Proceedings of the 7th ACM SIGSPATIAL International Workshop on Location-Based Social Networks (LBSN 2014), November 4, 2014, Dallas, Texas, USA. New York, NY: ACM Press, 2014
BibTex
@inproceedings{Senaratne2014Movin-30218,
  year={2014},
  title={Moving on Twitter : Using Episodic Hotspot and Drift Analysis to Detect and Characterise Spatial Trajectories},
  url={http://faculty.ce.berkeley.edu/pozdnukhov/lbsn14/camera-ready/MovingOnTwitter.pdf},
  publisher={ACM Press},
  address={New York, NY},
  booktitle={Proceedings of the 7th ACM SIGSPATIAL International Workshop on Location-Based Social Networks (LBSN 2014), November 4, 2014, Dallas, Texas, USA},
  author={Senaratne, Hansi and Bröring, Arne and Schreck, Tobias and Lehle, Dominic}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30218">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Lehle, Dominic</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T15:42:34Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Senaratne, Hansi</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Today, a tremendous source of spatio-temporal data is user generated, so-called volunteered geographic information (VGI). Among the many VGI sources, microblogged services, such as Twitter, are extensively used to disseminate information on a near real-time basis. Interest in analysis of microblogged data has been motivated to date by many applications ranging from trend detection, early disaster warning, to urban management and marketing. One important analysis perspective in understanding microblogged data is based on the notion of drift, considering a gradual change of real world phenomena observed across space, time, content, or a combination thereof.&lt;br /&gt;The scientific contribution provided by this paper is the presentation of a systematic framework that utilises on the one hand a Kernel Density Estimation (KDE) to detect hotspot clusters of Tweeter activities, which are episodically sequential in nature. These clusters help to derive spatial trajectories. On the other hand we introduce the concept of drift that characterises these trajectories by looking into changes of sentiment and topics to derive meaningful information. We apply our approach to a Twitter dataset comprising 26,000 tweets. We demonstrate how phenomena of interest can be detected by our approach. As an example, we use our approach to detect the locations of Lady Gaga’s concert tour in 2013. A set of visualisations allows to analyse the identified trajectories in space, enhanced by optional overlays for sentiment or other parameters of interest.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30218/1/Senaratne_0-284011.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30218/1/Senaratne_0-284011.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T15:42:34Z</dcterms:available>
    <dc:contributor>Bröring, Arne</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Bröring, Arne</dc:creator>
    <dcterms:title>Moving on Twitter : Using Episodic Hotspot and Drift Analysis to Detect and Characterise Spatial Trajectories</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30218"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Lehle, Dominic</dc:contributor>
    <dc:contributor>Senaratne, Hansi</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2015-03-11

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen