Publikation: Stochastic nonlinear time series forecasting using time-delay reservoir computers : performance and universality
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRIGORYEVA, Lyudmila, Julie HENRIQUES, Laurent LARGER, Juan-Pablo ORTEGA, 2014. Stochastic nonlinear time series forecasting using time-delay reservoir computers : performance and universality. In: Neural networks. 2014, 55, pp. 59-71. ISSN 0893-6080. eISSN 1879-2782. Available under: doi: 10.1016/j.neunet.2014.03.004BibTex
@article{Grigoryeva2014-07Stoch-40580,
year={2014},
doi={10.1016/j.neunet.2014.03.004},
title={Stochastic nonlinear time series forecasting using time-delay reservoir computers : performance and universality},
volume={55},
issn={0893-6080},
journal={Neural networks},
pages={59--71},
author={Grigoryeva, Lyudmila and Henriques, Julie and Larger, Laurent and Ortega, Juan-Pablo}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40580">
<dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
<dc:contributor>Larger, Laurent</dc:contributor>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:40:15Z</dc:date>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Grigoryeva, Lyudmila</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:40:15Z</dcterms:available>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:creator>Ortega, Juan-Pablo</dc:creator>
<dc:contributor>Ortega, Juan-Pablo</dc:contributor>
<dc:creator>Larger, Laurent</dc:creator>
<dc:language>eng</dc:language>
<dcterms:title>Stochastic nonlinear time series forecasting using time-delay reservoir computers : performance and universality</dcterms:title>
<dc:contributor>Henriques, Julie</dc:contributor>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:creator>Henriques, Julie</dc:creator>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40580"/>
<dcterms:abstract xml:lang="eng">Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs.</dcterms:abstract>
<dcterms:issued>2014-07</dcterms:issued>
</rdf:Description>
</rdf:RDF>