Publikation:

Stochastic nonlinear time series forecasting using time-delay reservoir computers : performance and universality

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Henriques, Julie
Larger, Laurent
Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Neural networks. 2014, 55, pp. 59-71. ISSN 0893-6080. eISSN 1879-2782. Available under: doi: 10.1016/j.neunet.2014.03.004

Zusammenfassung

Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Reservoir computing, echo state networks, neural computing, time-delay reservoir, time series forecasting, universality, VEC-GARCH model, volatility forecasting, realized volatility, parallel reservoir computing

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRIGORYEVA, Lyudmila, Julie HENRIQUES, Laurent LARGER, Juan-Pablo ORTEGA, 2014. Stochastic nonlinear time series forecasting using time-delay reservoir computers : performance and universality. In: Neural networks. 2014, 55, pp. 59-71. ISSN 0893-6080. eISSN 1879-2782. Available under: doi: 10.1016/j.neunet.2014.03.004
BibTex
@article{Grigoryeva2014-07Stoch-40580,
  year={2014},
  doi={10.1016/j.neunet.2014.03.004},
  title={Stochastic nonlinear time series forecasting using time-delay reservoir computers : performance and universality},
  volume={55},
  issn={0893-6080},
  journal={Neural networks},
  pages={59--71},
  author={Grigoryeva, Lyudmila and Henriques, Julie and Larger, Laurent and Ortega, Juan-Pablo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40580">
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dc:contributor>Larger, Laurent</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:40:15Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:40:15Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dc:creator>Larger, Laurent</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Stochastic nonlinear time series forecasting using time-delay reservoir computers : performance and universality</dcterms:title>
    <dc:contributor>Henriques, Julie</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Henriques, Julie</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40580"/>
    <dcterms:abstract xml:lang="eng">Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs.</dcterms:abstract>
    <dcterms:issued>2014-07</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen