Publikation:

Artificial intelligence, systemic risks, and sustainability

Lade...
Vorschaubild

Dateien

Galaz_2-z1aemjgpgx780.pdf
Galaz_2-z1aemjgpgx780.pdfGröße: 2.36 MBDownloads: 378

Datum

2021

Autor:innen

Galaz, Victor
Centeno, Miguel A.
Callahan, Peter W.
Causevic, Amar
Patterson, Thayer
Brass, Irina
Baum, Seth
Farber, Darryl
Fischer, Joern
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Technology in Society. Elsevier. 2021, 67, 101741. ISSN 0160-791X. eISSN 1879-3274. Available under: doi: 10.1016/j.techsoc.2021.101741

Zusammenfassung

Automated decision making and predictive analytics through artificial intelligence, in combination with rapid progress in technologies such as sensor technology and robotics are likely to change the way individuals, communities, governments and private actors perceive and respond to climate and ecological change. Methods based on various forms of artificial intelligence are already today being applied in a number of research fields related to climate change and environmental monitoring. Investments into applications of these technologies in agriculture, forestry and the extraction of marine resources also seem to be increasing rapidly. Despite a growing interest in, and deployment of AI-technologies in domains critical for sustainability, few have explored possible systemic risks in depth. This article offers a global overview of the progress of such technologies in sectors with high impact potential for sustainability like farming, forestry and the extraction of marine resources. We also identify possible systemic risks in these domains including a) algorithmic bias and allocative harms; b) unequal access and benefits; c) cascading failures and external disruptions, and d) trade-offs between efficiency and resilience. We explore these emerging risks, identify critical questions, and discuss the limitations of current governance mechanisms in addressing AI sustainability risks in these sectors.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Artificial intelligence, Climate change, Sustainability, Systemic risks, Anthropocene, Resilience, Social-ecological systems, Automation, Digitalization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GALAZ, Victor, Miguel A. CENTENO, Peter W. CALLAHAN, Amar CAUSEVIC, Thayer PATTERSON, Irina BRASS, Seth BAUM, Darryl FARBER, Joern FISCHER, David GARCIA, 2021. Artificial intelligence, systemic risks, and sustainability. In: Technology in Society. Elsevier. 2021, 67, 101741. ISSN 0160-791X. eISSN 1879-3274. Available under: doi: 10.1016/j.techsoc.2021.101741
BibTex
@article{Galaz2021Artif-59971,
  year={2021},
  doi={10.1016/j.techsoc.2021.101741},
  title={Artificial intelligence, systemic risks, and sustainability},
  volume={67},
  issn={0160-791X},
  journal={Technology in Society},
  author={Galaz, Victor and Centeno, Miguel A. and Callahan, Peter W. and Causevic, Amar and Patterson, Thayer and Brass, Irina and Baum, Seth and Farber, Darryl and Fischer, Joern and Garcia, David},
  note={Article Number: 101741}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59971">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Farber, Darryl</dc:contributor>
    <dc:creator>Galaz, Victor</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59971/1/Galaz_2-z1aemjgpgx780.pdf"/>
    <dc:creator>Fischer, Joern</dc:creator>
    <dc:creator>Callahan, Peter W.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59971"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Farber, Darryl</dc:creator>
    <dc:contributor>Galaz, Victor</dc:contributor>
    <dcterms:abstract xml:lang="eng">Automated decision making and predictive analytics through artificial intelligence, in combination with rapid progress in technologies such as sensor technology and robotics are likely to change the way individuals, communities, governments and private actors perceive and respond to climate and ecological change. Methods based on various forms of artificial intelligence are already today being applied in a number of research fields related to climate change and environmental monitoring. Investments into applications of these technologies in agriculture, forestry and the extraction of marine resources also seem to be increasing rapidly. Despite a growing interest in, and deployment of AI-technologies in domains critical for sustainability, few have explored possible systemic risks in depth. This article offers a global overview of the progress of such technologies in sectors with high impact potential for sustainability like farming, forestry and the extraction of marine resources. We also identify possible systemic risks in these domains including a) algorithmic bias and allocative harms; b) unequal access and benefits; c) cascading failures and external disruptions, and d) trade-offs between efficiency and resilience. We explore these emerging risks, identify critical questions, and discuss the limitations of current governance mechanisms in addressing AI sustainability risks in these sectors.</dcterms:abstract>
    <dc:contributor>Causevic, Amar</dc:contributor>
    <dc:contributor>Patterson, Thayer</dc:contributor>
    <dcterms:title>Artificial intelligence, systemic risks, and sustainability</dcterms:title>
    <dc:contributor>Garcia, David</dc:contributor>
    <dc:contributor>Centeno, Miguel A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-30T09:35:30Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-30T09:35:30Z</dcterms:available>
    <dc:contributor>Baum, Seth</dc:contributor>
    <dc:creator>Causevic, Amar</dc:creator>
    <dc:contributor>Brass, Irina</dc:contributor>
    <dc:creator>Patterson, Thayer</dc:creator>
    <dc:creator>Baum, Seth</dc:creator>
    <dc:contributor>Fischer, Joern</dc:contributor>
    <dc:creator>Brass, Irina</dc:creator>
    <dc:creator>Centeno, Miguel A.</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Callahan, Peter W.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59971/1/Galaz_2-z1aemjgpgx780.pdf"/>
    <dc:creator>Garcia, David</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen