Publikation: Artificial intelligence, systemic risks, and sustainability
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Automated decision making and predictive analytics through artificial intelligence, in combination with rapid progress in technologies such as sensor technology and robotics are likely to change the way individuals, communities, governments and private actors perceive and respond to climate and ecological change. Methods based on various forms of artificial intelligence are already today being applied in a number of research fields related to climate change and environmental monitoring. Investments into applications of these technologies in agriculture, forestry and the extraction of marine resources also seem to be increasing rapidly. Despite a growing interest in, and deployment of AI-technologies in domains critical for sustainability, few have explored possible systemic risks in depth. This article offers a global overview of the progress of such technologies in sectors with high impact potential for sustainability like farming, forestry and the extraction of marine resources. We also identify possible systemic risks in these domains including a) algorithmic bias and allocative harms; b) unequal access and benefits; c) cascading failures and external disruptions, and d) trade-offs between efficiency and resilience. We explore these emerging risks, identify critical questions, and discuss the limitations of current governance mechanisms in addressing AI sustainability risks in these sectors.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GALAZ, Victor, Miguel A. CENTENO, Peter W. CALLAHAN, Amar CAUSEVIC, Thayer PATTERSON, Irina BRASS, Seth BAUM, Darryl FARBER, Joern FISCHER, David GARCIA, 2021. Artificial intelligence, systemic risks, and sustainability. In: Technology in Society. Elsevier. 2021, 67, 101741. ISSN 0160-791X. eISSN 1879-3274. Available under: doi: 10.1016/j.techsoc.2021.101741BibTex
@article{Galaz2021Artif-59971, year={2021}, doi={10.1016/j.techsoc.2021.101741}, title={Artificial intelligence, systemic risks, and sustainability}, volume={67}, issn={0160-791X}, journal={Technology in Society}, author={Galaz, Victor and Centeno, Miguel A. and Callahan, Peter W. and Causevic, Amar and Patterson, Thayer and Brass, Irina and Baum, Seth and Farber, Darryl and Fischer, Joern and Garcia, David}, note={Article Number: 101741} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59971"> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Farber, Darryl</dc:contributor> <dc:creator>Galaz, Victor</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59971/1/Galaz_2-z1aemjgpgx780.pdf"/> <dc:creator>Fischer, Joern</dc:creator> <dc:creator>Callahan, Peter W.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59971"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Farber, Darryl</dc:creator> <dc:contributor>Galaz, Victor</dc:contributor> <dcterms:abstract xml:lang="eng">Automated decision making and predictive analytics through artificial intelligence, in combination with rapid progress in technologies such as sensor technology and robotics are likely to change the way individuals, communities, governments and private actors perceive and respond to climate and ecological change. Methods based on various forms of artificial intelligence are already today being applied in a number of research fields related to climate change and environmental monitoring. Investments into applications of these technologies in agriculture, forestry and the extraction of marine resources also seem to be increasing rapidly. Despite a growing interest in, and deployment of AI-technologies in domains critical for sustainability, few have explored possible systemic risks in depth. This article offers a global overview of the progress of such technologies in sectors with high impact potential for sustainability like farming, forestry and the extraction of marine resources. We also identify possible systemic risks in these domains including a) algorithmic bias and allocative harms; b) unequal access and benefits; c) cascading failures and external disruptions, and d) trade-offs between efficiency and resilience. We explore these emerging risks, identify critical questions, and discuss the limitations of current governance mechanisms in addressing AI sustainability risks in these sectors.</dcterms:abstract> <dc:contributor>Causevic, Amar</dc:contributor> <dc:contributor>Patterson, Thayer</dc:contributor> <dcterms:title>Artificial intelligence, systemic risks, and sustainability</dcterms:title> <dc:contributor>Garcia, David</dc:contributor> <dc:contributor>Centeno, Miguel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-30T09:35:30Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-30T09:35:30Z</dcterms:available> <dc:contributor>Baum, Seth</dc:contributor> <dc:creator>Causevic, Amar</dc:creator> <dc:contributor>Brass, Irina</dc:contributor> <dc:creator>Patterson, Thayer</dc:creator> <dc:creator>Baum, Seth</dc:creator> <dc:contributor>Fischer, Joern</dc:contributor> <dc:creator>Brass, Irina</dc:creator> <dc:creator>Centeno, Miguel A.</dc:creator> <dcterms:issued>2021</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Callahan, Peter W.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59971/1/Galaz_2-z1aemjgpgx780.pdf"/> <dc:creator>Garcia, David</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> </rdf:Description> </rdf:RDF>