Publikation: Adaptive force transmission in amoeboid cell migration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The leading front of a cell can either protrude as an actin-free membrane bleb that is inflated by actomyosin-driven contractile forces, or as an actin-rich pseudopodium, a site where polymerizing actin filaments push out the membrane1,2,3. Pushing filaments can only cause the membrane to protrude if the expanding actin network experiences a retrograde counter-force, which is usually provided by transmembrane receptors of the integrin family4. Here we show that chemotactic dendritic cells mechanically adapt to the adhesive properties of their substrate by switching between integrin-mediated and integrin-independent locomotion. We found that on engaging the integrin–actin clutch, actin polymerization was entirely turned into protrusion, whereas on disengagement actin underwent slippage and retrograde flow. Remarkably, accelerated retrograde flow was balanced by an increased actin polymerization rate; therefore, cell shape and protrusion velocity remained constant on alternating substrates. Due to this adaptive response in polymerization dynamics, tracks of adhesive substrate did not dictate the path of the cells. Instead, directional guidance was exclusively provided by a soluble gradient of chemoattractant, which endowed these 'amoeboid' cells with extraordinary flexibility, enabling them to traverse almost every type of tissue.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RENKAWITZ, Jörg, Kathrin SCHUMANN, Michele WEBER, Tim LÄMMERMANN, Holger PFLICKE, Matthieu PIEL, Julien POLLEUX, Joachim P. SPATZ, Michael SIXT, 2009. Adaptive force transmission in amoeboid cell migration. In: Nature Cell Biology. Springer. 2009, 11(12), S. 1438-1443. ISSN 1465-7392. eISSN 1476-4679. Verfügbar unter: doi: 10.1038/ncb1992BibTex
@article{Renkawitz2009-12Adapt-73158, title={Adaptive force transmission in amoeboid cell migration}, year={2009}, doi={10.1038/ncb1992}, number={12}, volume={11}, issn={1465-7392}, journal={Nature Cell Biology}, pages={1438--1443}, author={Renkawitz, Jörg and Schumann, Kathrin and Weber, Michele and Lämmermann, Tim and Pflicke, Holger and Piel, Matthieu and Polleux, Julien and Spatz, Joachim P. and Sixt, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73158"> <dc:contributor>Sixt, Michael</dc:contributor> <dc:contributor>Pflicke, Holger</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-29T11:14:53Z</dc:date> <dc:creator>Lämmermann, Tim</dc:creator> <dc:contributor>Polleux, Julien</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-29T11:14:53Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Adaptive force transmission in amoeboid cell migration</dcterms:title> <dcterms:issued>2009-12</dcterms:issued> <dc:creator>Spatz, Joachim P.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73158"/> <dc:creator>Polleux, Julien</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Lämmermann, Tim</dc:contributor> <dc:contributor>Piel, Matthieu</dc:contributor> <dc:contributor>Renkawitz, Jörg</dc:contributor> <dc:creator>Sixt, Michael</dc:creator> <dc:creator>Pflicke, Holger</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Schumann, Kathrin</dc:creator> <dc:creator>Weber, Michele</dc:creator> <dc:creator>Piel, Matthieu</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schumann, Kathrin</dc:contributor> <dc:creator>Renkawitz, Jörg</dc:creator> <dc:contributor>Weber, Michele</dc:contributor> <dc:contributor>Spatz, Joachim P.</dc:contributor> <dcterms:abstract>The leading front of a cell can either protrude as an actin-free membrane bleb that is inflated by actomyosin-driven contractile forces, or as an actin-rich pseudopodium, a site where polymerizing actin filaments push out the membrane<sup>1,2,3</sup>. Pushing filaments can only cause the membrane to protrude if the expanding actin network experiences a retrograde counter-force, which is usually provided by transmembrane receptors of the integrin family<sup>4</sup>. Here we show that chemotactic dendritic cells mechanically adapt to the adhesive properties of their substrate by switching between integrin-mediated and integrin-independent locomotion. We found that on engaging the integrin–actin clutch, actin polymerization was entirely turned into protrusion, whereas on disengagement actin underwent slippage and retrograde flow. Remarkably, accelerated retrograde flow was balanced by an increased actin polymerization rate; therefore, cell shape and protrusion velocity remained constant on alternating substrates. Due to this adaptive response in polymerization dynamics, tracks of adhesive substrate did not dictate the path of the cells. Instead, directional guidance was exclusively provided by a soluble gradient of chemoattractant, which endowed these 'amoeboid' cells with extraordinary flexibility, enabling them to traverse almost every type of tissue.</dcterms:abstract> </rdf:Description> </rdf:RDF>