Publikation: Estimating encounter location distributions from animal tracking data
Lade...
Dateien
Datum
2021
Autor:innen
Noonan, Michael J.
Martinez‐Garcia, Ricardo
Kays, Roland
Hirsch, Ben T.
Caillaud, Damien
Payne, Eric
Sih, Andrew
Sinn, David L.
et al.
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Methods in Ecology and Evolution. Wiley. 2021, 12(7), pp. 1158-1173. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13597
Zusammenfassung
- Ecologists have long been interested in linking individual behaviour with higher level processes. For motile species, this ‘upscaling’ is governed by how well any given movement strategy maximizes encounters with positive factors and minimizes encounters with negative factors. Despite the importance of encounter events for a broad range of ecological processes, encounter theory has not kept pace with developments in animal tracking or movement modelling. Furthermore, existing work has focused primarily on the relationship between animal movement and encounter rates while the relationship between individual movement and the spatial locations of encounter events in the environment has remained conspicuously understudied.
2. Here, we bridge this gap by introducing a method for describing the long-term encounter location probabilities for movement within home ranges, termed the conditional distribution of encounters (CDE). We then derive this distribution, as well as confidence intervals, implement its statistical estimator into open-source software and demonstrate the broad ecological relevance of this distribution.
3. We first use simulated data to show how our estimator provides asymptotically consistent estimates. We then demonstrate the general utility of this method for three simulation-based scenarios that occur routinely in biological systems: (a) a population of individuals with home ranges that overlap with neighbours; (b) a pair of individuals with a hard territorial border between their home ranges; and (c) a predator with a large home range that encompassed the home ranges of multiple prey individuals. Using GPS data from white-faced capuchins Cebus capucinus, tracked on Barro Colorado Island, Panama, and sleepy lizards Tiliqua rugosa, tracked in Bundey, South Australia, we then show how the CDE can be used to estimate the locations of territorial borders, identify key resources, quantify the potential for competitive or predatory interactions and/or identify any changes in behaviour that directly result from location-specific encounter probability.
4. The CDE enables researchers to better understand the dynamics of populations of interacting individuals. Notably, the general estimation framework developed in this work builds straightforwardly off of home range estimation and requires no specialized data collection protocols. This method is now openly available via the ctmm R package.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
animal movement, Cebus capucinus, contact, home range, interactions, Tiliqua rugosa
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
NOONAN, Michael J., Ricardo MARTINEZ‐GARCIA, Grace DAVIS, Margaret C. CROFOOT, Roland KAYS, Ben T. HIRSCH, Damien CAILLAUD, Eric PAYNE, Andrew SIH, David L. SINN, 2021. Estimating encounter location distributions from animal tracking data. In: Methods in Ecology and Evolution. Wiley. 2021, 12(7), pp. 1158-1173. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13597BibTex
@article{Noonan2021-07Estim-53828, year={2021}, doi={10.1111/2041-210X.13597}, title={Estimating encounter location distributions from animal tracking data}, number={7}, volume={12}, issn={2041-2096}, journal={Methods in Ecology and Evolution}, pages={1158--1173}, author={Noonan, Michael J. and Martinez‐Garcia, Ricardo and Davis, Grace and Crofoot, Margaret C. and Kays, Roland and Hirsch, Ben T. and Caillaud, Damien and Payne, Eric and Sih, Andrew and Sinn, David L.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53828"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53828/1/Noonan_2-z8u15nld1xjg1.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Hirsch, Ben T.</dc:contributor> <dc:contributor>Payne, Eric</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53828/1/Noonan_2-z8u15nld1xjg1.pdf"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dcterms:abstract xml:lang="eng">1. Ecologists have long been interested in linking individual behaviour with higher level processes. For motile species, this ‘upscaling’ is governed by how well any given movement strategy maximizes encounters with positive factors and minimizes encounters with negative factors. Despite the importance of encounter events for a broad range of ecological processes, encounter theory has not kept pace with developments in animal tracking or movement modelling. Furthermore, existing work has focused primarily on the relationship between animal movement and encounter rates while the relationship between individual movement and the spatial locations of encounter events in the environment has remained conspicuously understudied.<br /><br />2. Here, we bridge this gap by introducing a method for describing the long-term encounter location probabilities for movement within home ranges, termed the conditional distribution of encounters (CDE). We then derive this distribution, as well as confidence intervals, implement its statistical estimator into open-source software and demonstrate the broad ecological relevance of this distribution.<br /><br />3. We first use simulated data to show how our estimator provides asymptotically consistent estimates. We then demonstrate the general utility of this method for three simulation-based scenarios that occur routinely in biological systems: (a) a population of individuals with home ranges that overlap with neighbours; (b) a pair of individuals with a hard territorial border between their home ranges; and (c) a predator with a large home range that encompassed the home ranges of multiple prey individuals. Using GPS data from white-faced capuchins Cebus capucinus, tracked on Barro Colorado Island, Panama, and sleepy lizards Tiliqua rugosa, tracked in Bundey, South Australia, we then show how the CDE can be used to estimate the locations of territorial borders, identify key resources, quantify the potential for competitive or predatory interactions and/or identify any changes in behaviour that directly result from location-specific encounter probability.<br /><br />4. The CDE enables researchers to better understand the dynamics of populations of interacting individuals. Notably, the general estimation framework developed in this work builds straightforwardly off of home range estimation and requires no specialized data collection protocols. This method is now openly available via the ctmm R package.</dcterms:abstract> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-31T09:40:17Z</dcterms:available> <dc:contributor>Crofoot, Margaret C.</dc:contributor> <dc:contributor>Martinez‐Garcia, Ricardo</dc:contributor> <dc:creator>Davis, Grace</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53828"/> <dc:creator>Martinez‐Garcia, Ricardo</dc:creator> <dcterms:title>Estimating encounter location distributions from animal tracking data</dcterms:title> <dc:creator>Noonan, Michael J.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Sih, Andrew</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2021-07</dcterms:issued> <dc:contributor>Sinn, David L.</dc:contributor> <dc:creator>Payne, Eric</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-31T09:40:17Z</dc:date> <dc:contributor>Caillaud, Damien</dc:contributor> <dc:contributor>Noonan, Michael J.</dc:contributor> <dc:creator>Crofoot, Margaret C.</dc:creator> <dc:creator>Caillaud, Damien</dc:creator> <dc:contributor>Davis, Grace</dc:contributor> <dc:creator>Sinn, David L.</dc:creator> <dc:creator>Hirsch, Ben T.</dc:creator> <dc:creator>Sih, Andrew</dc:creator> <dc:contributor>Kays, Roland</dc:contributor> <dc:creator>Kays, Roland</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja