Publikation: Deciphering Personal Argument Styles : A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we introduce an application for exploring the effect of linguistic features on personalized argument preferences. These individual preferences are derived by measuring the impact of linguistic features on pairwise comparisons between arguments. The insights derived from this are, in turn, useful for studies of argument quality. To conduct this research, we have developed a new pipeline that covers three major components: data collection, argument comparison labeling, and data exploration, incorporating linguistic annotations of arguments and preference data. The first component has resulted in a novel corpus consisting of minimal pairs of arguments: the comparable argument corpus. For the second component, we have developed a visual interactive labeling system that structures the annotation process of pairwise comparisons. Through these annotations, we extract patterns of argument preferences using Gaussian Process Preference Learning based on linguistic feature vectors. The corresponding, personalized models are used to identify relevant features to explain argument preferences. By training individual models for different users, we gain information that allows us to compare different user groups, identifying different argumentation preferences across groups. Each of these steps is supported by novel visual analytics dashboards, facilitating data collection and annotation steps and enabling the exploration of personal preferences.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZYMLA, Mark-Matthias, Raphael BUCHMÜLLER, Miriam BUTT, Daniel A. KEIM, 2024. Deciphering Personal Argument Styles : A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences. First International Conference on Advances in Robust Argumentation Machines : RATIO 2024. Bielefeld, Germany, 5. Juni 2024 - 7. Juni 2024. In: CIMIANO, Philipp, Hrsg., Anette FRANK, Hrsg., Michael KOHLHASE, Hrsg. und andere. Robust Argumentation Machines : First International Conference, RATIO 2024, Proceedings. Cham: Springer, 2024, S. 296-314. Lecture Notes in Computer Science (LNCS). 14638. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-63535-9. Verfügbar unter: doi: 10.1007/978-3-031-63536-6_18BibTex
@inproceedings{Zymla2024Decip-70736, year={2024}, doi={10.1007/978-3-031-63536-6_18}, title={Deciphering Personal Argument Styles : A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences}, number={14638}, isbn={978-3-031-63535-9}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science (LNCS)}, booktitle={Robust Argumentation Machines : First International Conference, RATIO 2024, Proceedings}, pages={296--314}, editor={Cimiano, Philipp and Frank, Anette and Kohlhase, Michael}, author={Zymla, Mark-Matthias and Buchmüller, Raphael and Butt, Miriam and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70736"> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Butt, Miriam</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-05T06:57:03Z</dcterms:available> <dc:contributor>Butt, Miriam</dc:contributor> <dc:contributor>Buchmüller, Raphael</dc:contributor> <dc:contributor>Zymla, Mark-Matthias</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70736"/> <dc:creator>Buchmüller, Raphael</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70736/4/Zymla_2-zf99ulvtytq21.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70736/4/Zymla_2-zf99ulvtytq21.pdf"/> <dcterms:abstract>In this paper, we introduce an application for exploring the effect of linguistic features on personalized argument preferences. These individual preferences are derived by measuring the impact of linguistic features on pairwise comparisons between arguments. The insights derived from this are, in turn, useful for studies of argument quality. To conduct this research, we have developed a new pipeline that covers three major components: data collection, argument comparison labeling, and data exploration, incorporating linguistic annotations of arguments and preference data. The first component has resulted in a novel corpus consisting of minimal pairs of arguments: the comparable argument corpus. For the second component, we have developed a visual interactive labeling system that structures the annotation process of pairwise comparisons. Through these annotations, we extract patterns of argument preferences using Gaussian Process Preference Learning based on linguistic feature vectors. The corresponding, personalized models are used to identify relevant features to explain argument preferences. By training individual models for different users, we gain information that allows us to compare different user groups, identifying different argumentation preferences across groups. Each of these steps is supported by novel visual analytics dashboards, facilitating data collection and annotation steps and enabling the exploration of personal preferences.</dcterms:abstract> <dcterms:issued>2024</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-05T06:57:03Z</dc:date> <dcterms:title>Deciphering Personal Argument Styles : A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Zymla, Mark-Matthias</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> </rdf:Description> </rdf:RDF>