Publikation:

Deciphering Personal Argument Styles : A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences

Lade...
Vorschaubild

Dateien

Zymla_2-zf99ulvtytq21.pdf
Zymla_2-zf99ulvtytq21.pdfGröße: 1.54 MBDownloads: 14

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 455910360

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CIMIANO, Philipp, Hrsg., Anette FRANK, Hrsg., Michael KOHLHASE, Hrsg. und andere. Robust Argumentation Machines : First International Conference, RATIO 2024, Proceedings. Cham: Springer, 2024, S. 296-314. Lecture Notes in Computer Science (LNCS). 14638. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-63535-9. Verfügbar unter: doi: 10.1007/978-3-031-63536-6_18

Zusammenfassung

In this paper, we introduce an application for exploring the effect of linguistic features on personalized argument preferences. These individual preferences are derived by measuring the impact of linguistic features on pairwise comparisons between arguments. The insights derived from this are, in turn, useful for studies of argument quality. To conduct this research, we have developed a new pipeline that covers three major components: data collection, argument comparison labeling, and data exploration, incorporating linguistic annotations of arguments and preference data. The first component has resulted in a novel corpus consisting of minimal pairs of arguments: the comparable argument corpus. For the second component, we have developed a visual interactive labeling system that structures the annotation process of pairwise comparisons. Through these annotations, we extract patterns of argument preferences using Gaussian Process Preference Learning based on linguistic feature vectors. The corresponding, personalized models are used to identify relevant features to explain argument preferences. By training individual models for different users, we gain information that allows us to compare different user groups, identifying different argumentation preferences across groups. Each of these steps is supported by novel visual analytics dashboards, facilitating data collection and annotation steps and enabling the exploration of personal preferences.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik

Schlagwörter

argument quality, argument preferences, visual analytics

Konferenz

First International Conference on Advances in Robust Argumentation Machines : RATIO 2024, 5. Juni 2024 - 7. Juni 2024, Bielefeld, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZYMLA, Mark-Matthias, Raphael BUCHMÜLLER, Miriam BUTT, Daniel A. KEIM, 2024. Deciphering Personal Argument Styles : A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences. First International Conference on Advances in Robust Argumentation Machines : RATIO 2024. Bielefeld, Germany, 5. Juni 2024 - 7. Juni 2024. In: CIMIANO, Philipp, Hrsg., Anette FRANK, Hrsg., Michael KOHLHASE, Hrsg. und andere. Robust Argumentation Machines : First International Conference, RATIO 2024, Proceedings. Cham: Springer, 2024, S. 296-314. Lecture Notes in Computer Science (LNCS). 14638. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-63535-9. Verfügbar unter: doi: 10.1007/978-3-031-63536-6_18
BibTex
@inproceedings{Zymla2024Decip-70736,
  year={2024},
  doi={10.1007/978-3-031-63536-6_18},
  title={Deciphering Personal Argument Styles : A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences},
  number={14638},
  isbn={978-3-031-63535-9},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science (LNCS)},
  booktitle={Robust Argumentation Machines : First International Conference, RATIO 2024, Proceedings},
  pages={296--314},
  editor={Cimiano, Philipp and Frank, Anette and Kohlhase, Michael},
  author={Zymla, Mark-Matthias and Buchmüller, Raphael and Butt, Miriam and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70736">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Butt, Miriam</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-05T06:57:03Z</dcterms:available>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <dc:contributor>Buchmüller, Raphael</dc:contributor>
    <dc:contributor>Zymla, Mark-Matthias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70736"/>
    <dc:creator>Buchmüller, Raphael</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70736/4/Zymla_2-zf99ulvtytq21.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70736/4/Zymla_2-zf99ulvtytq21.pdf"/>
    <dcterms:abstract>In this paper, we introduce an application for exploring the effect of linguistic features on personalized argument preferences. These individual preferences are derived by measuring the impact of linguistic features on pairwise comparisons between arguments. The insights derived from this are, in turn, useful for studies of argument quality. To conduct this research, we have developed a new pipeline that covers three major components: data collection, argument comparison labeling, and data exploration, incorporating linguistic annotations of arguments and preference data. The first component has resulted in a novel corpus consisting of minimal pairs of arguments: the comparable argument corpus. For the second component, we have developed a visual interactive labeling system that structures the annotation process of pairwise comparisons. Through these annotations, we extract patterns of argument preferences using Gaussian Process Preference Learning based on linguistic feature vectors. The corresponding, personalized models are used to identify relevant features to explain argument preferences. By training individual models for different users, we gain information that allows us to compare different user groups, identifying different argumentation preferences across groups. Each of these steps is supported by novel visual analytics dashboards, facilitating data collection and annotation steps and enabling the exploration of personal preferences.</dcterms:abstract>
    <dcterms:issued>2024</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-05T06:57:03Z</dc:date>
    <dcterms:title>Deciphering Personal Argument Styles : A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:creator>Zymla, Mark-Matthias</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen