Publikation: Generalized thermoelastic plates : frequency analysis
Lade...
Dateien
Datum
2019
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
We analyse coupled systems of thermoelastic type given in a general abstract form. We consider a self-adjoint, non-negative operator A on a Hilbert space such that 0 ∈ σ(A). In applications this setting belongs to problems in the whole space case or in exterior domains. Heat conduction is modelled with Fourier's law of heat conduction. In addition we take into consideration an inertial term. A complete picture of the region of smoothing and also the region of regularity loss for the arising parameters is given.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FISCHER, Lisa, 2019. Generalized thermoelastic plates : frequency analysisBibTex
@techreport{Fischer2019Gener-47819, year={2019}, series={Konstanzer Schriften in Mathematik}, title={Generalized thermoelastic plates : frequency analysis}, number={387}, author={Fischer, Lisa} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47819"> <dc:creator>Fischer, Lisa</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We analyse coupled systems of thermoelastic type given in a general abstract form. We consider a self-adjoint, non-negative operator A on a Hilbert space such that 0 ∈ σ(A). In applications this setting belongs to problems in the whole space case or in exterior domains. Heat conduction is modelled with Fourier's law of heat conduction. In addition we take into consideration an inertial term. A complete picture of the region of smoothing and also the region of regularity loss for the arising parameters is given.</dcterms:abstract> <dc:contributor>Fischer, Lisa</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47819/3/Fischer_2-zidgghbt0hag2.pdf"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-04T09:42:58Z</dc:date> <dcterms:issued>2019</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47819/3/Fischer_2-zidgghbt0hag2.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47819"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Generalized thermoelastic plates : frequency analysis</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-04T09:42:58Z</dcterms:available> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja