Publikation: UADAPy : An Uncertainty-Aware Visualization and Analysis Toolbox
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Current research provides methods to communicate uncertainty and adapts classical algorithms of the visualization pipeline to take the uncertainty into account. Various existing visualization frameworks include methods to present uncertain data but do not offer transformation techniques tailored to uncertain data. Therefore, we propose a software package for uncertainty-aware data analysis in Python (UADAPy) offering methods for uncertain data along the visualization pipeline. We aim to provide a platform that is the foundation for further integration of uncertainty algorithms and visualizations. It provides common utility functionality to support research in uncertainty-aware visualization algorithms and makes state-of-the-art research results accessible to the end user. The project is available at https://github.com/UniStuttgart-VISUS/uadapy.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PAETZOLD, Patrick, David HÄGELE, Marina EVERS, Daniel WEISKOPF, Oliver DEUSSEN, 2024. UADAPy : An Uncertainty-Aware Visualization and Analysis Toolbox. 2024 IEEE Workshop on Uncertainty Visualization : Applications, Techniques, Software, and Decision Frameworks. St Pete Beach, Florida, USA, 14. Okt. 2024. In: 2024 IEEE Workshop on Uncertainty Visualization : Applications, Techniques, Software, and Decision Frameworks, Proceedings. Piscataway, NJ: IEEE, 2024, S. 48-50. ISBN 979-8-3315-2761-7. Verfügbar unter: doi: 10.1109/uncertaintyvisualization63963.2024.00011BibTex
@inproceedings{Paetzold2024-10-14UADAP-71550, year={2024}, doi={10.1109/uncertaintyvisualization63963.2024.00011}, title={UADAPy : An Uncertainty-Aware Visualization and Analysis Toolbox}, isbn={979-8-3315-2761-7}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2024 IEEE Workshop on Uncertainty Visualization : Applications, Techniques, Software, and Decision Frameworks, Proceedings}, pages={48--50}, author={Paetzold, Patrick and Hägele, David and Evers, Marina and Weiskopf, Daniel and Deussen, Oliver} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71550"> <dc:contributor>Hägele, David</dc:contributor> <dc:creator>Hägele, David</dc:creator> <dc:contributor>Paetzold, Patrick</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71550"/> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:abstract>Current research provides methods to communicate uncertainty and adapts classical algorithms of the visualization pipeline to take the uncertainty into account. Various existing visualization frameworks include methods to present uncertain data but do not offer transformation techniques tailored to uncertain data. Therefore, we propose a software package for uncertainty-aware data analysis in Python (UADAPy) offering methods for uncertain data along the visualization pipeline. We aim to provide a platform that is the foundation for further integration of uncertainty algorithms and visualizations. It provides common utility functionality to support research in uncertainty-aware visualization algorithms and makes state-of-the-art research results accessible to the end user. The project is available at https://github.com/UniStuttgart-VISUS/uadapy.</dcterms:abstract> <dc:creator>Weiskopf, Daniel</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Paetzold, Patrick</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Evers, Marina</dc:contributor> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-03T12:38:29Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-03T12:38:29Z</dc:date> <dcterms:title>UADAPy : An Uncertainty-Aware Visualization and Analysis Toolbox</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2024-10-14</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Evers, Marina</dc:creator> </rdf:Description> </rdf:RDF>