Publikation:

A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Honauer, Katrin
Kondermann, Daniel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

LAI, Shang-Hong, ed. and others. Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III. Cham: Springer, 2017, pp. 19-34. Lecture Notes in Computer Science. 10113. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-54186-0. Available under: doi: 10.1007/978-3-319-54187-7_2

Zusammenfassung

In computer vision communities such as stereo, optical flow, or visual tracking, commonly accepted and widely used benchmarks have enabled objective comparison and boosted scientific progress. In the emergent light field community, a comparable benchmark and evaluation methodology is still missing. The performance of newly proposed methods is often demonstrated qualitatively on a handful of images, making quantitative comparison and targeted progress very difficult. To overcome these difficulties, we propose a novel light field benchmark. We provide 24 carefully designed synthetic, densely sampled 4D light fields with highly accurate disparity ground truth. We thoroughly evaluate four state-of-the-art light field algorithms and one multi-view stereo algorithm using existing and novel error measures. This consolidated state-of-the art may serve as a baseline to stimulate and guide further scientific progress. We publish the benchmark website http://www.lightfield-analysis.net, an evaluation toolkit, and our rendering setup to encourage submissions of both algorithms and further datasets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

13th Asian Conference on Computer Vision, 20. Nov. 2016 - 24. Nov. 2016, Taipei
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HONAUER, Katrin, Ole JOHANNSEN, Daniel KONDERMANN, Bastian GOLDLÜCKE, 2017. A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. 13th Asian Conference on Computer Vision. Taipei, 20. Nov. 2016 - 24. Nov. 2016. In: LAI, Shang-Hong, ed. and others. Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III. Cham: Springer, 2017, pp. 19-34. Lecture Notes in Computer Science. 10113. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-54186-0. Available under: doi: 10.1007/978-3-319-54187-7_2
BibTex
@inproceedings{Honauer2017-03-11Datas-38021,
  year={2017},
  doi={10.1007/978-3-319-54187-7_2},
  title={A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields},
  number={10113},
  isbn={978-3-319-54186-0},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III},
  pages={19--34},
  editor={Lai, Shang-Hong},
  author={Honauer, Katrin and Johannsen, Ole and Kondermann, Daniel and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38021">
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dc:creator>Kondermann, Daniel</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2017-03-11</dcterms:issued>
    <dc:contributor>Kondermann, Daniel</dc:contributor>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Honauer, Katrin</dc:creator>
    <dcterms:title>A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields</dcterms:title>
    <dcterms:abstract xml:lang="eng">In computer vision communities such as stereo, optical flow, or visual tracking, commonly accepted and widely used benchmarks have enabled objective comparison and boosted scientific progress. In the emergent light field community, a comparable benchmark and evaluation methodology is still missing. The performance of newly proposed methods is often demonstrated qualitatively on a handful of images, making quantitative comparison and targeted progress very difficult. To overcome these difficulties, we propose a novel light field benchmark. We provide 24 carefully designed synthetic, densely sampled 4D light fields with highly accurate disparity ground truth. We thoroughly evaluate four state-of-the-art light field algorithms and one multi-view stereo algorithm using existing and novel error measures. This consolidated state-of-the art may serve as a baseline to stimulate and guide further scientific progress. We publish the benchmark website http://www.lightfield-analysis.net, an evaluation toolkit, and our rendering setup to encourage submissions of both algorithms and further datasets.</dcterms:abstract>
    <dc:contributor>Honauer, Katrin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T07:00:09Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T07:00:09Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38021"/>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen