Publikation: A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In computer vision communities such as stereo, optical flow, or visual tracking, commonly accepted and widely used benchmarks have enabled objective comparison and boosted scientific progress. In the emergent light field community, a comparable benchmark and evaluation methodology is still missing. The performance of newly proposed methods is often demonstrated qualitatively on a handful of images, making quantitative comparison and targeted progress very difficult. To overcome these difficulties, we propose a novel light field benchmark. We provide 24 carefully designed synthetic, densely sampled 4D light fields with highly accurate disparity ground truth. We thoroughly evaluate four state-of-the-art light field algorithms and one multi-view stereo algorithm using existing and novel error measures. This consolidated state-of-the art may serve as a baseline to stimulate and guide further scientific progress. We publish the benchmark website http://www.lightfield-analysis.net, an evaluation toolkit, and our rendering setup to encourage submissions of both algorithms and further datasets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HONAUER, Katrin, Ole JOHANNSEN, Daniel KONDERMANN, Bastian GOLDLÜCKE, 2017. A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. 13th Asian Conference on Computer Vision. Taipei, 20. Nov. 2016 - 24. Nov. 2016. In: LAI, Shang-Hong, ed. and others. Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III. Cham: Springer, 2017, pp. 19-34. Lecture Notes in Computer Science. 10113. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-54186-0. Available under: doi: 10.1007/978-3-319-54187-7_2BibTex
@inproceedings{Honauer2017-03-11Datas-38021, year={2017}, doi={10.1007/978-3-319-54187-7_2}, title={A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields}, number={10113}, isbn={978-3-319-54186-0}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III}, pages={19--34}, editor={Lai, Shang-Hong}, author={Honauer, Katrin and Johannsen, Ole and Kondermann, Daniel and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38021"> <dc:creator>Johannsen, Ole</dc:creator> <dc:contributor>Johannsen, Ole</dc:contributor> <dc:creator>Kondermann, Daniel</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2017-03-11</dcterms:issued> <dc:contributor>Kondermann, Daniel</dc:contributor> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:language>eng</dc:language> <dc:creator>Honauer, Katrin</dc:creator> <dcterms:title>A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields</dcterms:title> <dcterms:abstract xml:lang="eng">In computer vision communities such as stereo, optical flow, or visual tracking, commonly accepted and widely used benchmarks have enabled objective comparison and boosted scientific progress. In the emergent light field community, a comparable benchmark and evaluation methodology is still missing. The performance of newly proposed methods is often demonstrated qualitatively on a handful of images, making quantitative comparison and targeted progress very difficult. To overcome these difficulties, we propose a novel light field benchmark. We provide 24 carefully designed synthetic, densely sampled 4D light fields with highly accurate disparity ground truth. We thoroughly evaluate four state-of-the-art light field algorithms and one multi-view stereo algorithm using existing and novel error measures. This consolidated state-of-the art may serve as a baseline to stimulate and guide further scientific progress. We publish the benchmark website http://www.lightfield-analysis.net, an evaluation toolkit, and our rendering setup to encourage submissions of both algorithms and further datasets.</dcterms:abstract> <dc:contributor>Honauer, Katrin</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T07:00:09Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-17T07:00:09Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38021"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> </rdf:Description> </rdf:RDF>