Publikation:

Permutation tests for hypothesis testing with animal social network data : Problems and potential solutions

Lade...
Vorschaubild

Dateien

Farine_2-zmrtuooimgzq8.pdf
Farine_2-zmrtuooimgzq8.pdfGröße: 955.16 KBDownloads: 291

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methods in Ecology and Evolution. Wiley. 2022, 13(1), pp. 144-156. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13741

Zusammenfassung

  1. Permutation tests are widely used to test null hypotheses with animal social network data, but suffer from high rates of type I and II error when the permutations do not properly simulate the intended null hypothesis.

    2. Two common types of permutations each have limitations. Pre-network (or datastream) permutations can be used to control ‘nuisance effects’ like spatial, temporal or sampling biases, but only when the null hypothesis assumes random social structure. Node (or node-label) permutation tests can test null hypotheses that include nonrandom social structure, but only when nuisance effects do not shape the observed network.

    3. We demonstrate one possible solution addressing these limitations: using pre-network permutations to adjust the values for each node or edge before conducting a node permutation test. We conduct a range of simulations to estimate error rates caused by confounding effects of social or non-social structure in the raw data.

    4. Regressions on simulated datasets suggest that this ‘double permutation’ approach is less likely to produce elevated error rates relative to using only node permutations, pre-network permutations or node permutations with simple covariates, which all exhibit elevated type I errors under at least one set of simulated conditions. For example, in scenarios where type I error rates from pre-network permutation tests exceed 30%, the error rates from double permutation remain at 5%.

    5. The double permutation procedure provides one potential solution to issues arising from elevated type I and type II error rates when testing null hypotheses with social network data. We also discuss alternative approaches that can provide robust inference, including fitting mixed effects models, restricted node permutations, testing multiple null hypotheses and splitting large datasets to generate replicated networks. Finally, we highlight ways that uncertainty can be explicitly considered and carried through the analysis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FARINE, Damien R., Gerald G. CARTER, 2022. Permutation tests for hypothesis testing with animal social network data : Problems and potential solutions. In: Methods in Ecology and Evolution. Wiley. 2022, 13(1), pp. 144-156. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13741
BibTex
@article{Farine2022-01Permu-55507,
  year={2022},
  doi={10.1111/2041-210X.13741},
  title={Permutation tests for hypothesis testing with animal social network data : Problems and potential solutions},
  number={1},
  volume={13},
  issn={2041-2096},
  journal={Methods in Ecology and Evolution},
  pages={144--156},
  author={Farine, Damien R. and Carter, Gerald G.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55507">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Farine, Damien R.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Permutation tests for hypothesis testing with animal social network data : Problems and potential solutions</dcterms:title>
    <dcterms:abstract xml:lang="eng">1. Permutation tests are widely used to test null hypotheses with animal social network data, but suffer from high rates of type I and II error when the permutations do not properly simulate the intended null hypothesis.&lt;br /&gt;&lt;br /&gt;2. Two common types of permutations each have limitations. Pre-network (or datastream) permutations can be used to control ‘nuisance effects’ like spatial, temporal or sampling biases, but only when the null hypothesis assumes random social structure. Node (or node-label) permutation tests can test null hypotheses that include nonrandom social structure, but only when nuisance effects do not shape the observed network.&lt;br /&gt;&lt;br /&gt;3. We demonstrate one possible solution addressing these limitations: using pre-network permutations to adjust the values for each node or edge before conducting a node permutation test. We conduct a range of simulations to estimate error rates caused by confounding effects of social or non-social structure in the raw data.&lt;br /&gt;&lt;br /&gt;4. Regressions on simulated datasets suggest that this ‘double permutation’ approach is less likely to produce elevated error rates relative to using only node permutations, pre-network permutations or node permutations with simple covariates, which all exhibit elevated type I errors under at least one set of simulated conditions. For example, in scenarios where type I error rates from pre-network permutation tests exceed 30%, the error rates from double permutation remain at 5%.&lt;br /&gt;&lt;br /&gt;5. The double permutation procedure provides one potential solution to issues arising from elevated type I and type II error rates when testing null hypotheses with social network data. We also discuss alternative approaches that can provide robust inference, including fitting mixed effects models, restricted node permutations, testing multiple null hypotheses and splitting large datasets to generate replicated networks. Finally, we highlight ways that uncertainty can be explicitly considered and carried through the analysis.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-11T10:21:43Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <dc:contributor>Carter, Gerald G.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55507"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55507/1/Farine_2-zmrtuooimgzq8.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55507/1/Farine_2-zmrtuooimgzq8.pdf"/>
    <dc:creator>Carter, Gerald G.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-11T10:21:43Z</dcterms:available>
    <dcterms:issued>2022-01</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen