Publikation: Abstaining machine learning : philosophical considerations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper establishes a connection between the fields of machine learning (ML) and philosophy concerning the phenomenon of behaving neutrally. It investigates a specific class of ML systems capable of delivering a neutral response to a given task, referred to as abstaining machine learning systems, that has not yet been studied from a philosophical perspective. The paper introduces and explains various abstaining machine learning systems, and categorizes them into distinct types. An examination is conducted on how abstention in the different machine learning system types aligns with the epistemological counterpart of suspended judgment, addressing both the nature of suspension and its normative profile. Additionally, a philosophical analysis is suggested on the autonomy and explainability of the abstaining response. It is argued, specifically, that one of the distinguished types of abstaining systems is preferable as it aligns more closely with our criteria for suspended judgment. Moreover, it is better equipped to autonomously generate abstaining outputs and offer explanations for abstaining outputs when compared to the other type.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHUSTER, Daniela, 2025. Abstaining machine learning : philosophical considerations. In: AI & Society : The Journal of Human-Centred Systems and Machine Intelligence. Springer. ISSN 0951-5666. eISSN 1435-5655. Verfügbar unter: doi: 10.1007/s00146-025-02188-yBibTex
@article{Schuster2025-03-22Absta-73097, title={Abstaining machine learning : philosophical considerations}, year={2025}, doi={10.1007/s00146-025-02188-y}, issn={0951-5666}, journal={AI & Society : The Journal of Human-Centred Systems and Machine Intelligence}, author={Schuster, Daniela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73097"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-23T12:07:13Z</dc:date> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-23T12:07:13Z</dcterms:available> <dc:contributor>Schuster, Daniela</dc:contributor> <dcterms:title>Abstaining machine learning : philosophical considerations</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2025-03-22</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73097"/> <dc:creator>Schuster, Daniela</dc:creator> <dcterms:abstract>This paper establishes a connection between the fields of machine learning (ML) and philosophy concerning the phenomenon of behaving neutrally. It investigates a specific class of ML systems capable of delivering a neutral response to a given task, referred to as abstaining machine learning systems, that has not yet been studied from a philosophical perspective. The paper introduces and explains various abstaining machine learning systems, and categorizes them into distinct types. An examination is conducted on how abstention in the different machine learning system types aligns with the epistemological counterpart of suspended judgment, addressing both the nature of suspension and its normative profile. Additionally, a philosophical analysis is suggested on the autonomy and explainability of the abstaining response. It is argued, specifically, that one of the distinguished types of abstaining systems is preferable as it aligns more closely with our criteria for suspended judgment. Moreover, it is better equipped to autonomously generate abstaining outputs and offer explanations for abstaining outputs when compared to the other type.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>