Publikation:

Abstaining machine learning : philosophical considerations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

AI & Society : The Journal of Human-Centred Systems and Machine Intelligence. Springer. ISSN 0951-5666. eISSN 1435-5655. Verfügbar unter: doi: 10.1007/s00146-025-02188-y

Zusammenfassung

This paper establishes a connection between the fields of machine learning (ML) and philosophy concerning the phenomenon of behaving neutrally. It investigates a specific class of ML systems capable of delivering a neutral response to a given task, referred to as abstaining machine learning systems, that has not yet been studied from a philosophical perspective. The paper introduces and explains various abstaining machine learning systems, and categorizes them into distinct types. An examination is conducted on how abstention in the different machine learning system types aligns with the epistemological counterpart of suspended judgment, addressing both the nature of suspension and its normative profile. Additionally, a philosophical analysis is suggested on the autonomy and explainability of the abstaining response. It is argued, specifically, that one of the distinguished types of abstaining systems is preferable as it aligns more closely with our criteria for suspended judgment. Moreover, it is better equipped to autonomously generate abstaining outputs and offer explanations for abstaining outputs when compared to the other type.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Abstaining machine learning, Machine learning with rejection, Suspension of judgment, Neutrality, Explainable AI, Supervised learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHUSTER, Daniela, 2025. Abstaining machine learning : philosophical considerations. In: AI & Society : The Journal of Human-Centred Systems and Machine Intelligence. Springer. ISSN 0951-5666. eISSN 1435-5655. Verfügbar unter: doi: 10.1007/s00146-025-02188-y
BibTex
@article{Schuster2025-03-22Absta-73097,
  title={Abstaining machine learning : philosophical considerations},
  year={2025},
  doi={10.1007/s00146-025-02188-y},
  issn={0951-5666},
  journal={AI & Society : The Journal of Human-Centred Systems and Machine Intelligence},
  author={Schuster, Daniela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73097">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-23T12:07:13Z</dc:date>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-23T12:07:13Z</dcterms:available>
    <dc:contributor>Schuster, Daniela</dc:contributor>
    <dcterms:title>Abstaining machine learning : philosophical considerations</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2025-03-22</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73097"/>
    <dc:creator>Schuster, Daniela</dc:creator>
    <dcterms:abstract>This paper establishes a connection between the fields of machine learning (ML) and philosophy concerning the phenomenon of behaving neutrally. It investigates a specific class of ML systems capable of delivering a neutral response to a given task, referred to as abstaining machine learning systems, that has not yet been studied from a philosophical perspective. The paper introduces and explains various abstaining machine learning systems, and categorizes them into distinct types. An examination is conducted on how abstention in the different machine learning system types aligns with the epistemological counterpart of suspended judgment, addressing both the nature of suspension and its normative profile. Additionally, a philosophical analysis is suggested on the autonomy and explainability of the abstaining response. It is argued, specifically, that one of the distinguished types of abstaining systems is preferable as it aligns more closely with our criteria for suspended judgment. Moreover, it is better equipped to autonomously generate abstaining outputs and offer explanations for abstaining outputs when compared to the other type.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen