Publikation:

Active learning machine learns to create new quantum experiments

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Melnikov, Alexey A.
Poulsen Nautrup, Hendrik
Krenn, Mario
Dunjko, Vedran
Tiersch, Markus
Zeilinger, Anton

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Proceedings of the National Academy of Sciences of the United States of America. 2018, 115(6), pp. 1221-1226. ISSN 0027-8424. eISSN 1091-6490. Available under: doi: 10.1073/pnas.1714936115

Zusammenfassung

How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MELNIKOV, Alexey A., Hendrik POULSEN NAUTRUP, Mario KRENN, Vedran DUNJKO, Markus TIERSCH, Anton ZEILINGER, Hans J. BRIEGEL, 2018. Active learning machine learns to create new quantum experiments. In: Proceedings of the National Academy of Sciences of the United States of America. 2018, 115(6), pp. 1221-1226. ISSN 0027-8424. eISSN 1091-6490. Available under: doi: 10.1073/pnas.1714936115
BibTex
@article{Melnikov2018Activ-41712,
  year={2018},
  doi={10.1073/pnas.1714936115},
  title={Active learning machine learns to create new quantum experiments},
  number={6},
  volume={115},
  issn={0027-8424},
  journal={Proceedings of the National Academy of Sciences of the United States of America},
  pages={1221--1226},
  author={Melnikov, Alexey A. and Poulsen Nautrup, Hendrik and Krenn, Mario and Dunjko, Vedran and Tiersch, Markus and Zeilinger, Anton and Briegel, Hans J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41712">
    <dc:contributor>Zeilinger, Anton</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:abstract xml:lang="eng">How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.</dcterms:abstract>
    <dc:contributor>Tiersch, Markus</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41712"/>
    <dc:contributor>Krenn, Mario</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-07T10:35:47Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-07T10:35:47Z</dcterms:available>
    <dc:contributor>Dunjko, Vedran</dc:contributor>
    <dc:creator>Tiersch, Markus</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:creator>Zeilinger, Anton</dc:creator>
    <dc:creator>Krenn, Mario</dc:creator>
    <dc:contributor>Melnikov, Alexey A.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Dunjko, Vedran</dc:creator>
    <dc:creator>Melnikov, Alexey A.</dc:creator>
    <dc:creator>Poulsen Nautrup, Hendrik</dc:creator>
    <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Active learning machine learns to create new quantum experiments</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen