Publikation: Discrete-Time Signatures and Randomness in Reservoir Computing
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A new explanation of the geometric nature of the reservoir computing (RC) phenomenon is presented. RC is understood in the literature as the possibility of approximating input-output systems with randomly chosen recurrent neural systems and a trained linear readout layer. Light is shed on this phenomenon by constructing what is called strongly universal reservoir systems as random projections of a family of state-space systems that generate Volterra series expansions. This procedure yields a state-affine reservoir system with randomly generated coefficients in a dimension that is logarithmically reduced with respect to the original system. This reservoir system is able to approximate any element in the fading memory filters class just by training a different linear readout for each different filter. Explicit expressions for the probability distributions needed in the generation of the projected reservoir system are stated, and bounds for the committed approximation error are provided.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CUCHIERO, Christa, Lukas GONON, Lyudmila GRIGORYEVA, Juan-Pablo ORTEGA, Josef TEICHMANN, 2021. Discrete-Time Signatures and Randomness in Reservoir Computing. In: IEEE Transactions on Neural Networks and Learning Systems. IEEE. eISSN 2162-237X. Available under: doi: 10.1109/TNNLS.2021.3076777BibTex
@article{Cuchiero2021-05-26Discr-55523, year={2021}, doi={10.1109/TNNLS.2021.3076777}, title={Discrete-Time Signatures and Randomness in Reservoir Computing}, journal={IEEE Transactions on Neural Networks and Learning Systems}, author={Cuchiero, Christa and Gonon, Lukas and Grigoryeva, Lyudmila and Ortega, Juan-Pablo and Teichmann, Josef} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55523"> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55523/1/Cuchiero_2-zpejktn8beud5.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T10:08:41Z</dcterms:available> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dcterms:abstract xml:lang="eng">A new explanation of the geometric nature of the reservoir computing (RC) phenomenon is presented. RC is understood in the literature as the possibility of approximating input-output systems with randomly chosen recurrent neural systems and a trained linear readout layer. Light is shed on this phenomenon by constructing what is called strongly universal reservoir systems as random projections of a family of state-space systems that generate Volterra series expansions. This procedure yields a state-affine reservoir system with randomly generated coefficients in a dimension that is logarithmically reduced with respect to the original system. This reservoir system is able to approximate any element in the fading memory filters class just by training a different linear readout for each different filter. Explicit expressions for the probability distributions needed in the generation of the projected reservoir system are stated, and bounds for the committed approximation error are provided.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2021-05-26</dcterms:issued> <dc:creator>Cuchiero, Christa</dc:creator> <dc:creator>Teichmann, Josef</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Gonon, Lukas</dc:creator> <dc:contributor>Cuchiero, Christa</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55523/1/Cuchiero_2-zpejktn8beud5.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55523"/> <dc:contributor>Gonon, Lukas</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T10:08:41Z</dc:date> <dc:creator>Ortega, Juan-Pablo</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Discrete-Time Signatures and Randomness in Reservoir Computing</dcterms:title> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <dc:contributor>Teichmann, Josef</dc:contributor> </rdf:Description> </rdf:RDF>