Publikation:

Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions

Lade...
Vorschaubild

Dateien

Hamborg_2-zvj635jqif8r8.pdf
Hamborg_2-zvj635jqif8r8.pdfGröße: 194.76 KBDownloads: 916

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CHOWDHURY, Gobinda, ed. and others. Transforming Digital Worlds : 13th International Conference, iConference 2018. Cham: Springer, 2018, pp. 356-366. Lecture Notes in Computer Science. 10766. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-78104-4. Available under: doi: 10.1007/978-3-319-78105-1_39

Zusammenfassung

Extraction of event descriptors from news articles is a commonly required task for various tasks, such as clustering related articles, summarization, and news aggregation. Due to the lack of generally usable and publicly available methods optimized for news, many researchers must redundantly implement such methods for their project. Answers to the five journalistic W questions (5Ws) describe the main event of a news article, i.e., who did what, when, where, and why. The main contribution of this paper is Giveme5W, the first open-source, syntax-based 5W extraction system for news articles. The system retrieves an article’s main event by extracting phrases that answer the journalistic 5Ws. In an evaluation with three assessors and 60 articles, we find that the extraction precision of 5W phrases is p=0.7.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

News event detection, 5W extraction, 5W question answering

Konferenz

13th International Conference : iConference 2018, 25. März 2018 - 28. März 2018, Sheffield, UK
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAMBORG, Felix, Soeren LACHNIT, Moritz SCHUBOTZ, Thomas HEPP, Bela GIPP, 2018. Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions. 13th International Conference : iConference 2018. Sheffield, UK, 25. März 2018 - 28. März 2018. In: CHOWDHURY, Gobinda, ed. and others. Transforming Digital Worlds : 13th International Conference, iConference 2018. Cham: Springer, 2018, pp. 356-366. Lecture Notes in Computer Science. 10766. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-78104-4. Available under: doi: 10.1007/978-3-319-78105-1_39
BibTex
@inproceedings{Hamborg2018Givem-42992,
  year={2018},
  doi={10.1007/978-3-319-78105-1_39},
  title={Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions},
  number={10766},
  isbn={978-3-319-78104-4},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Transforming Digital Worlds : 13th International Conference, iConference 2018},
  pages={356--366},
  editor={Chowdhury, Gobinda},
  author={Hamborg, Felix and Lachnit, Soeren and Schubotz, Moritz and Hepp, Thomas and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42992">
    <dcterms:abstract xml:lang="eng">Extraction of event descriptors from news articles is a commonly required task for various tasks, such as clustering related articles, summarization, and news aggregation. Due to the lack of generally usable and publicly available methods optimized for news, many researchers must redundantly implement such methods for their project. Answers to the five journalistic W questions (5Ws) describe the main event of a news article, i.e., who did what, when, where, and why. The main contribution of this paper is Giveme5W, the first open-source, syntax-based 5W extraction system for news articles. The system retrieves an article’s main event by extracting phrases that answer the journalistic 5Ws. In an evaluation with three assessors and 60 articles, we find that the extraction precision of 5W phrases is p=0.7.</dcterms:abstract>
    <dcterms:title>Giveme5W : Main Event Retrieval from News Articles by Extraction of the Five Journalistic W Questions</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T11:33:23Z</dc:date>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-07T11:33:23Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42992"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dc:contributor>Lachnit, Soeren</dc:contributor>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:creator>Lachnit, Soeren</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42992/1/Hamborg_2-zvj635jqif8r8.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hepp, Thomas</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42992/1/Hamborg_2-zvj635jqif8r8.pdf"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dc:creator>Hepp, Thomas</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen