Publikation: Algorithms for Landmark Hub Labeling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Landmark-based routing and Hub Labeling (HL) are shortest path planning techniques, both of which rely on storing shortest path distances between selected pairs of nodes in a preprocessing phase to accelerate query answering. In Landmark-based routing, stored distances to landmark nodes are used to obtain distance lower bounds that guide A* search from node s to node t. With HL, tight upper bounds for shortest path distances between any s-t-pair can be interfered from their stored node labels, making HL an efficient distance oracle. However, for shortest path retrieval, the oracle has to be called once per edge in said path. Furthermore, HL often suffers from a large space consumption as many node pair distances have to be stored in the labels to allow for correct query answering. In this paper, we propose a novel technique, called Landmark Hub Labeling (LHL), which integrates the landmark concept into HL. We prove better worst-case path retrieval times for LHL in case it is path-consistent (a new labeling property we introduce). Moreover, we design efficient (approximation) algorithms that produce path-consistent LHL with small label size and provide parametrized upper bounds, depending on the highway dimension h or the geodesic transversal number gt of the graph. Finally, we show that the space consumption of LHL is smaller than that of (hierarchical) HL, both in theory and in experiments on real-world road networks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STORANDT, Sabine, 2022. Algorithms for Landmark Hub Labeling. 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Seoul, Korea, 19. Dez. 2022 - 21. Dez. 2022. In: BAE, Sang Won, ed., Heejin PARK, ed.. 33rd International Symposium on Algorithms and Computation : Proceedings. Saarbrücken/Wadern: Dagstuhl Publishing, 2022, 5. LIPIcs. 248. ISBN 978-3-95977-258-7. Available under: doi: 10.4230/LIPIcs.ISAAC.2022.5BibTex
@inproceedings{Storandt2022Algor-66363, year={2022}, doi={10.4230/LIPIcs.ISAAC.2022.5}, title={Algorithms for Landmark Hub Labeling}, number={248}, isbn={978-3-95977-258-7}, publisher={Dagstuhl Publishing}, address={Saarbrücken/Wadern}, series={LIPIcs}, booktitle={33rd International Symposium on Algorithms and Computation : Proceedings}, editor={Bae, Sang Won and Park, Heejin}, author={Storandt, Sabine}, note={Article Number: 5} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66363"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66363/1/Storandt_2-zx0ar0i8vh9u7.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Storandt, Sabine</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-09T08:31:38Z</dc:date> <dcterms:issued>2022</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66363/1/Storandt_2-zx0ar0i8vh9u7.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66363"/> <dcterms:title>Algorithms for Landmark Hub Labeling</dcterms:title> <dcterms:abstract xml:lang="eng">Landmark-based routing and Hub Labeling (HL) are shortest path planning techniques, both of which rely on storing shortest path distances between selected pairs of nodes in a preprocessing phase to accelerate query answering. In Landmark-based routing, stored distances to landmark nodes are used to obtain distance lower bounds that guide A* search from node s to node t. With HL, tight upper bounds for shortest path distances between any s-t-pair can be interfered from their stored node labels, making HL an efficient distance oracle. However, for shortest path retrieval, the oracle has to be called once per edge in said path. Furthermore, HL often suffers from a large space consumption as many node pair distances have to be stored in the labels to allow for correct query answering. In this paper, we propose a novel technique, called Landmark Hub Labeling (LHL), which integrates the landmark concept into HL. We prove better worst-case path retrieval times for LHL in case it is path-consistent (a new labeling property we introduce). Moreover, we design efficient (approximation) algorithms that produce path-consistent LHL with small label size and provide parametrized upper bounds, depending on the highway dimension h or the geodesic transversal number gt of the graph. Finally, we show that the space consumption of LHL is smaller than that of (hierarchical) HL, both in theory and in experiments on real-world road networks.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Storandt, Sabine</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-09T08:31:38Z</dcterms:available> </rdf:Description> </rdf:RDF>