Publikation:

Singular stochastic control and its relations to Dynkin game and entry-exit problems

Lade...
Vorschaubild

Dateien

fbd_pub2.pdf
fbd_pub2.pdfGröße: 1.58 MBDownloads: 631

Datum

2001

Autor:innen

Boetius, Frederik

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Singuläre stochastische Kontrolle und ihre Beziehungen zu Dynkin-Spiel- und -Eintritt-Austritt-Problemen
Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We consider a bounded variation singular stochastic control problem
with value V, the associated Dynkin game with value u and an
associated entry-exit or optimal switching problem. We establish the relation
dV/dx=u known from control of Bronwian motion for a general
situation with control of a diffusion and a nonlinear cost functional
defined as solution to a BSDE. A saddle point for the Dynkin game is
given by the pair of first action times of an optimal control.
Through an impulse control approximation scheme we construct a
solution to the control problem from solutions to the entry-exit
problem, and obtain an integral representation for the value V. As
a special case we deduce equivalence of monotone control and optimal
stopping.

In a Markovian setting we characterize the value of the control
problem in n dimensions as the largest viscosity solution to a
quasilinear Hamilton-Jacobi-Bellman PDE with gradient constraints. Due
to the gradient constraints, the latter has no unique solution in
general.

The methods are from stochastic analysis and include a priori estimates, pathwise
construction,
comparison theorems for FSDE and BSDE, Ito formula for convex
functions and nonlinear Feynman-Kac
formulae. Using this approach we can drop the condition of a
``proper'' operator in the HJB PDE
and alter the standard path for comparison towards a global argument.

Zusammenfassung in einer weiteren Sprache

We consider a bounded variation singular stochastic control problem
with value V, the associated Dynkin game with value u and an
associated entry-exit or optimal switching problem. We establish the relation
dV/dx=u known from control of Bronwian motion for a general
situation with control of a diffusion and a nonlinear cost functional
defined as solution to a BSDE. A saddle point for the Dynkin game is
given by the pair of first action times of an optimal control.
Through an impulse control approximation scheme we construct a
solution to the control problem from solutions to the entry-exit
problem, and obtain an integral representation for the value V. As
a special case we deduce equivalence of monotone control and optimal
stopping.

In a Markovian setting we characterize the value of the control
problem in n dimensions as the largest viscosity solution to a
quasilinear Hamilton-Jacobi-Bellman PDE with gradient constraints. Due
to the gradient constraints, the latter has no unique solution in
general.

The methods are from stochastic analysis and include a priori estimates, pathwise
construction,
comparison theorems for FSDE and BSDE, Ito formula for convex
functions and nonlinear Feynman-Kac
formulae. Using this approach we can drop the condition of a
``proper'' operator in the HJB PDE
and alter the standard path for comparison towards a global argument.

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Stochastische Rückwärtsdifferentialgleichung, singuläre Kontrolle, sequentielles Stoppen, Beschränkung des Gradienten, pfadweise Konstruktion, Backward stochastic differential equation, singular control, sequential stopping, gradient constraint, pathwise construction

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BOETIUS, Frederik, 2001. Singular stochastic control and its relations to Dynkin game and entry-exit problems [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Boetius2001Singu-584,
  year={2001},
  title={Singular stochastic control and its relations to Dynkin game and entry-exit problems},
  author={Boetius, Frederik},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/584">
    <dc:creator>Boetius, Frederik</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:alternative>Singuläre stochastische Kontrolle und ihre Beziehungen zu Dynkin-Spiel- und -Eintritt-Austritt-Problemen</dcterms:alternative>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:issued>2001</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/584/1/fbd_pub2.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="deu">We consider a bounded variation singular stochastic control problem&lt;br /&gt;with value V, the associated Dynkin game with value u and an&lt;br /&gt;associated entry-exit or optimal switching problem. We establish the relation&lt;br /&gt;dV/dx=u known from control of Bronwian motion for a general&lt;br /&gt;situation with control of a diffusion and a nonlinear cost functional&lt;br /&gt;defined as solution to a BSDE. A saddle point for the Dynkin game is&lt;br /&gt;given by the pair of first action times of an optimal control.&lt;br /&gt;Through an impulse control approximation scheme we construct a&lt;br /&gt;solution to the control problem from solutions to the entry-exit&lt;br /&gt;problem, and obtain an integral representation for the value V. As&lt;br /&gt;a special case we deduce  equivalence of monotone control and optimal&lt;br /&gt;stopping.&lt;br /&gt;&lt;br /&gt;In a Markovian setting we characterize the value of the control&lt;br /&gt;problem in n dimensions as the largest viscosity solution to a&lt;br /&gt;quasilinear Hamilton-Jacobi-Bellman PDE with gradient constraints. Due&lt;br /&gt;to the gradient constraints, the latter has no unique solution in&lt;br /&gt;general.&lt;br /&gt;&lt;br /&gt;The methods are from stochastic analysis and include a priori estimates, pathwise&lt;br /&gt;construction,&lt;br /&gt;comparison theorems for FSDE and BSDE, Ito formula for convex&lt;br /&gt;functions and nonlinear Feynman-Kac&lt;br /&gt;formulae. Using this approach we can drop the condition of a&lt;br /&gt;``proper'' operator in the HJB PDE&lt;br /&gt;and alter the standard path for comparison towards a global argument.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/584"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:08Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:08Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/584/1/fbd_pub2.pdf"/>
    <dcterms:title>Singular stochastic control and its relations to Dynkin game and entry-exit problems</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Boetius, Frederik</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

November 21, 2002
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen