Publikation: Singular stochastic control and its relations to Dynkin game and entry-exit problems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider a bounded variation singular stochastic control problem
with value V, the associated Dynkin game with value u and an
associated entry-exit or optimal switching problem. We establish the relation
dV/dx=u known from control of Bronwian motion for a general
situation with control of a diffusion and a nonlinear cost functional
defined as solution to a BSDE. A saddle point for the Dynkin game is
given by the pair of first action times of an optimal control.
Through an impulse control approximation scheme we construct a
solution to the control problem from solutions to the entry-exit
problem, and obtain an integral representation for the value V. As
a special case we deduce equivalence of monotone control and optimal
stopping.
In a Markovian setting we characterize the value of the control
problem in n dimensions as the largest viscosity solution to a
quasilinear Hamilton-Jacobi-Bellman PDE with gradient constraints. Due
to the gradient constraints, the latter has no unique solution in
general.
The methods are from stochastic analysis and include a priori estimates, pathwise
construction,
comparison theorems for FSDE and BSDE, Ito formula for convex
functions and nonlinear Feynman-Kac
formulae. Using this approach we can drop the condition of a
``proper'' operator in the HJB PDE
and alter the standard path for comparison towards a global argument.
Zusammenfassung in einer weiteren Sprache
We consider a bounded variation singular stochastic control problem
with value V, the associated Dynkin game with value u and an
associated entry-exit or optimal switching problem. We establish the relation
dV/dx=u known from control of Bronwian motion for a general
situation with control of a diffusion and a nonlinear cost functional
defined as solution to a BSDE. A saddle point for the Dynkin game is
given by the pair of first action times of an optimal control.
Through an impulse control approximation scheme we construct a
solution to the control problem from solutions to the entry-exit
problem, and obtain an integral representation for the value V. As
a special case we deduce equivalence of monotone control and optimal
stopping.
In a Markovian setting we characterize the value of the control
problem in n dimensions as the largest viscosity solution to a
quasilinear Hamilton-Jacobi-Bellman PDE with gradient constraints. Due
to the gradient constraints, the latter has no unique solution in
general.
The methods are from stochastic analysis and include a priori estimates, pathwise
construction,
comparison theorems for FSDE and BSDE, Ito formula for convex
functions and nonlinear Feynman-Kac
formulae. Using this approach we can drop the condition of a
``proper'' operator in the HJB PDE
and alter the standard path for comparison towards a global argument.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BOETIUS, Frederik, 2001. Singular stochastic control and its relations to Dynkin game and entry-exit problems [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Boetius2001Singu-584, year={2001}, title={Singular stochastic control and its relations to Dynkin game and entry-exit problems}, author={Boetius, Frederik}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/584"> <dc:creator>Boetius, Frederik</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:alternative>Singuläre stochastische Kontrolle und ihre Beziehungen zu Dynkin-Spiel- und -Eintritt-Austritt-Problemen</dcterms:alternative> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:format>application/pdf</dc:format> <dcterms:issued>2001</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/584/1/fbd_pub2.pdf"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="deu">We consider a bounded variation singular stochastic control problem<br />with value V, the associated Dynkin game with value u and an<br />associated entry-exit or optimal switching problem. We establish the relation<br />dV/dx=u known from control of Bronwian motion for a general<br />situation with control of a diffusion and a nonlinear cost functional<br />defined as solution to a BSDE. A saddle point for the Dynkin game is<br />given by the pair of first action times of an optimal control.<br />Through an impulse control approximation scheme we construct a<br />solution to the control problem from solutions to the entry-exit<br />problem, and obtain an integral representation for the value V. As<br />a special case we deduce equivalence of monotone control and optimal<br />stopping.<br /><br />In a Markovian setting we characterize the value of the control<br />problem in n dimensions as the largest viscosity solution to a<br />quasilinear Hamilton-Jacobi-Bellman PDE with gradient constraints. Due<br />to the gradient constraints, the latter has no unique solution in<br />general.<br /><br />The methods are from stochastic analysis and include a priori estimates, pathwise<br />construction,<br />comparison theorems for FSDE and BSDE, Ito formula for convex<br />functions and nonlinear Feynman-Kac<br />formulae. Using this approach we can drop the condition of a<br />``proper'' operator in the HJB PDE<br />and alter the standard path for comparison towards a global argument.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/584"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:08Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:08Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/584/1/fbd_pub2.pdf"/> <dcterms:title>Singular stochastic control and its relations to Dynkin game and entry-exit problems</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Boetius, Frederik</dc:contributor> </rdf:Description> </rdf:RDF>