Publikation: Dirac-Kronig-Penney model for strain-engineered graphene
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Motivated by recent proposals on strain engineering of graphene electronic circuits we calculate conductivity, shot noise and the density of states in periodically deformed graphene. We provide the solution to the Dirac-Kronig-Penney model, which describes the phase-coherent transport in clean monolayer samples with an one-dimensional modulation of the strain and the electrostatic potentials. We compare the exact results to a qualitative band-structure analysis. We find that periodic strains induce large pseudogaps and suppress charge transport in the direction of strain modulation. The strain-induced minima in the gate-voltage dependence of the conductivity characterize the quality of graphene superstructures. The effect is especially strong if the variation in interatomic distance exceeds the value a2/ℓ, where a is the lattice spacing of free graphene and ℓ is the period of the superlattice. A similar effect induced by a periodic electrostatic potential is weakened due to Klein tunnelling.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BELZIG, Wolfgang, Sebastian GATTENLÖHNER, Mikhail TITOV, 2010. Dirac-Kronig-Penney model for strain-engineered graphene. In: Physical Review B. 2010, 82(15). ISSN 1098-0121. Available under: doi: 10.1103/PhysRevB.82.155417BibTex
@article{Belzig2010Dirac-12436,
year={2010},
doi={10.1103/PhysRevB.82.155417},
title={Dirac-Kronig-Penney model for strain-engineered graphene},
number={15},
volume={82},
issn={1098-0121},
journal={Physical Review B},
author={Belzig, Wolfgang and Gattenlöhner, Sebastian and Titov, Mikhail}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12436">
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12436"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<dcterms:bibliographicCitation>First publ. in: Physical Review B 82 (2010), 155417</dcterms:bibliographicCitation>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T09:35:31Z</dc:date>
<dc:creator>Titov, Mikhail</dc:creator>
<dcterms:title>Dirac-Kronig-Penney model for strain-engineered graphene</dcterms:title>
<dc:contributor>Belzig, Wolfgang</dc:contributor>
<dc:rights>terms-of-use</dc:rights>
<dcterms:abstract xml:lang="eng">Motivated by recent proposals on strain engineering of graphene electronic circuits we calculate conductivity, shot noise and the density of states in periodically deformed graphene. We provide the solution to the Dirac-Kronig-Penney model, which describes the phase-coherent transport in clean monolayer samples with an one-dimensional modulation of the strain and the electrostatic potentials. We compare the exact results to a qualitative band-structure analysis. We find that periodic strains induce large pseudogaps and suppress charge transport in the direction of strain modulation. The strain-induced minima in the gate-voltage dependence of the conductivity characterize the quality of graphene superstructures. The effect is especially strong if the variation in interatomic distance exceeds the value a2/ℓ, where a is the lattice spacing of free graphene and ℓ is the period of the superlattice. A similar effect induced by a periodic electrostatic potential is weakened due to Klein tunnelling.</dcterms:abstract>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Belzig, Wolfgang</dc:creator>
<dc:creator>Gattenlöhner, Sebastian</dc:creator>
<dcterms:issued>2010</dcterms:issued>
<dc:language>eng</dc:language>
<dc:contributor>Gattenlöhner, Sebastian</dc:contributor>
<dc:contributor>Titov, Mikhail</dc:contributor>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T09:35:31Z</dcterms:available>
</rdf:Description>
</rdf:RDF>