Publikation: On the synergy of probabilistic causality computation and causality checking
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In recent work on the safety analysis of systems we have shown how causal relationships amongst events can be algorithmically inferred from probabilistic counterexamples and subsequently be mapped to fault trees. The resulting fault trees were significantly smaller and hence easier to understand than the corresponding probabilistic counterexample, but still contain all information needed to discern the causes for the occurrence of a hazard. More recently we have developed an approach called Causality Checking which is integrated into the state-space exploration algorithms used for qualitative model checking and which is capable of computing causality relationships on-the-fly. The causality checking approach outperforms the probabilistic causality computation in terms of run-time and memory consumption, but can not provide a probabilistic measure. In this paper we combine the strengths of both approaches and propose an approach where the causal events are computed using causality checking and the probability computation can be limited to the causal events. We demonstrate the increase in performance of our approach using several case studies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LEITNER-FISCHER, Florian, Stefan LEUE, 2013. On the synergy of probabilistic causality computation and causality checking. In: BARTOCCI, Ezio, ed., C. R. RAMAKRISHNAN, ed.. Model Checking Software. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 246-263. Lecture Notes in Computer Science. 7976. ISBN 978-3-642-39175-0. Available under: doi: 10.1007/978-3-642-39176-7_16BibTex
@inproceedings{LeitnerFischer2013syner-24390, year={2013}, doi={10.1007/978-3-642-39176-7_16}, title={On the synergy of probabilistic causality computation and causality checking}, number={7976}, isbn={978-3-642-39175-0}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Model Checking Software}, pages={246--263}, editor={Bartocci, Ezio and Ramakrishnan, C. R.}, author={Leitner-Fischer, Florian and Leue, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24390"> <dcterms:bibliographicCitation>Model Checking Software : 20th International Symposium, SPIN 2013, Stony Brook, NY, USA, July 8-9, 2013, Proceedings / Ezio Bartocci ... (eds.). - Berlin : Springer, 2013. - S. 246-263. - (Lecture Notes in Computer Science ; 7976). - ISBN 978-3-642-39175-0</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dcterms:title>On the synergy of probabilistic causality computation and causality checking</dcterms:title> <dc:creator>Leue, Stefan</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-16T13:24:47Z</dc:date> <dc:contributor>Leue, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2013</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">In recent work on the safety analysis of systems we have shown how causal relationships amongst events can be algorithmically inferred from probabilistic counterexamples and subsequently be mapped to fault trees. The resulting fault trees were significantly smaller and hence easier to understand than the corresponding probabilistic counterexample, but still contain all information needed to discern the causes for the occurrence of a hazard. More recently we have developed an approach called Causality Checking which is integrated into the state-space exploration algorithms used for qualitative model checking and which is capable of computing causality relationships on-the-fly. The causality checking approach outperforms the probabilistic causality computation in terms of run-time and memory consumption, but can not provide a probabilistic measure. In this paper we combine the strengths of both approaches and propose an approach where the causal events are computed using causality checking and the probability computation can be limited to the causal events. We demonstrate the increase in performance of our approach using several case studies.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24390"/> <dc:contributor>Leitner-Fischer, Florian</dc:contributor> <dc:creator>Leitner-Fischer, Florian</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24390/1/Leitner_243905.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24390/1/Leitner_243905.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-08-31T22:25:06Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>