Publikation: Two remarks on sums of squares with rational coefficients
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
There exist homogeneous polynomials f with Q-coefficients that are sums of squares over R but not over Q. The only systematic construction of such polynomials that is known so far uses as its key ingredient totally imaginary number fields K/Q with specific Galois-theoretic properties. We first show that one may relax these properties considerably without losing the conclusion, and that this relaxation is sharp at least in a weak sense. In the second part we discuss the open question whether any f as above necessarily has a (non-trivial) real zero. In the minimal open cases (3,6) and (4,4), we prove that all examples without a real zero are contained in a thin subset of the boundary of the sum of squares cone.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHEIDERER, Claus, Jose CAPCO, 2020. Two remarks on sums of squares with rational coefficients. 5th Joint Conferences on Algebra, Logic and Number Theory. Będlewo, 24. Juni 2018 - 29. Juni 2018. In: GŁADKI, Paweł, ed., Jochen KOENIGSMANN, ed., Przemysław KOPROWSKI, ed. and others. Proceedings of the 5th Joint Conferences on Algebra, Logic and Number Theory. Warschau: Institute of Mathematics, Polish Academy of Sciences, 2020, pp. 25-36. Banach Center Publications. 121. ISBN 9788386806478. Available under: doi: 10.4064/bc121-2BibTex
@inproceedings{Scheiderer2020remar-53177, year={2020}, doi={10.4064/bc121-2}, title={Two remarks on sums of squares with rational coefficients}, number={121}, isbn={9788386806478}, publisher={Institute of Mathematics, Polish Academy of Sciences}, address={Warschau}, series={Banach Center Publications}, booktitle={Proceedings of the 5th Joint Conferences on Algebra, Logic and Number Theory}, pages={25--36}, editor={Gładki, Paweł and Koenigsmann, Jochen and Koprowski, Przemysław}, author={Scheiderer, Claus and Capco, Jose} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53177"> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53177"/> <dc:contributor>Capco, Jose</dc:contributor> <dcterms:title>Two remarks on sums of squares with rational coefficients</dcterms:title> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-17T15:21:27Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-17T15:21:27Z</dc:date> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">There exist homogeneous polynomials f with Q-coefficients that are sums of squares over R but not over Q. The only systematic construction of such polynomials that is known so far uses as its key ingredient totally imaginary number fields K/Q with specific Galois-theoretic properties. We first show that one may relax these properties considerably without losing the conclusion, and that this relaxation is sharp at least in a weak sense. In the second part we discuss the open question whether any f as above necessarily has a (non-trivial) real zero. In the minimal open cases (3,6) and (4,4), we prove that all examples without a real zero are contained in a thin subset of the boundary of the sum of squares cone.</dcterms:abstract> <dcterms:issued>2020</dcterms:issued> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Capco, Jose</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>