Publikation:

Adapted K-Core Decomposition and Visualization for Functional Magnetic Resonance Imaging Connectivity Networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

de Ridder, Michael
Kim, Jinman

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Learning from the past, looking to the future : 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 17-21, 2018, Hawaii Convention Center, Honolulu, Hawaii. Piscataway, NJ: IEEE, 2018, pp. 4134-4137. ISSN 1557-170X. eISSN 1558-4615. ISBN 978-1-5386-3647-3. Available under: doi: 10.1109/EMBC.2018.8513275

Zusammenfassung

Medical imaging modalities, such as functional magnetic resonance imaging (fMRI) are being increasingly used to study the human brain. Analysis of the images has led to findings describing diseases, such as schizophrenia and post-traumatic stress disorder. One of the most widely used methods of analysis involves creating functional connectivity network (FCN) abstractions. These summarize the temporal relationships between regions of interest (ROIs) in the brain and can be used to easily compare subjects, e.g. healthy against schizophrenia. Visual analytics is widely used to facilitate such analysis, with existing approaches designed to enable and simplify detailed interpretation of single networks and pairs of networks in comparison. Prior to such detailed analysis, grouping and aggregation is often performed on the data, which is a time consuming and difficult task. Existing methods for doing this are commonly statistical, while others visualize the cohort without presenting vital network details of the individual FCNs. Thus, there is an opportunity for alternative visual analytics to facilitate the grouping by incorporating the network details. Graph decomposition, such as k-core decomposition, can be used to simplify the representation of networks, while retaining these vital network details. In this study, we propose an adapted k-core decomposition algorithm and visualization, which calculates the connected component information of nodes in the FCNs, a key detail in analysis. Our visualization combines this information with the decomposition to display more details about FCNs at a high-level than contemporary approaches. We present a prototype of our method, demonstrating the ability to group and aggregate the data without the loss of vital network details for further detailed analysis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 18. Juli 2018 - 21. Juli 2018, Honolulu, Hawaii
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DE RIDDER, Michael, Karsten KLEIN, Jinman KIM, 2018. Adapted K-Core Decomposition and Visualization for Functional Magnetic Resonance Imaging Connectivity Networks. 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, Hawaii, 18. Juli 2018 - 21. Juli 2018. In: Learning from the past, looking to the future : 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 17-21, 2018, Hawaii Convention Center, Honolulu, Hawaii. Piscataway, NJ: IEEE, 2018, pp. 4134-4137. ISSN 1557-170X. eISSN 1558-4615. ISBN 978-1-5386-3647-3. Available under: doi: 10.1109/EMBC.2018.8513275
BibTex
@inproceedings{deRidder2018-07Adapt-44749,
  year={2018},
  doi={10.1109/EMBC.2018.8513275},
  title={Adapted K-Core Decomposition and Visualization for Functional Magnetic Resonance Imaging Connectivity Networks},
  isbn={978-1-5386-3647-3},
  issn={1557-170X},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={Learning from the past, looking to the future : 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 17-21, 2018, Hawaii Convention Center, Honolulu, Hawaii},
  pages={4134--4137},
  author={de Ridder, Michael and Klein, Karsten and Kim, Jinman}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44749">
    <dc:contributor>de Ridder, Michael</dc:contributor>
    <dc:creator>Klein, Karsten</dc:creator>
    <dcterms:abstract xml:lang="eng">Medical imaging modalities, such as functional magnetic resonance imaging (fMRI) are being increasingly used to study the human brain. Analysis of the images has led to findings describing diseases, such as schizophrenia and post-traumatic stress disorder. One of the most widely used methods of analysis involves creating functional connectivity network (FCN) abstractions. These summarize the temporal relationships between regions of interest (ROIs) in the brain and can be used to easily compare subjects, e.g. healthy against schizophrenia. Visual analytics is widely used to facilitate such analysis, with existing approaches designed to enable and simplify detailed interpretation of single networks and pairs of networks in comparison. Prior to such detailed analysis, grouping and aggregation is often performed on the data, which is a time consuming and difficult task. Existing methods for doing this are commonly statistical, while others visualize the cohort without presenting vital network details of the individual FCNs. Thus, there is an opportunity for alternative visual analytics to facilitate the grouping by incorporating the network details. Graph decomposition, such as k-core decomposition, can be used to simplify the representation of networks, while retaining these vital network details. In this study, we propose an adapted k-core decomposition algorithm and visualization, which calculates the connected component information of nodes in the FCNs, a key detail in analysis. Our visualization combines this information with the decomposition to display more details about FCNs at a high-level than contemporary approaches. We present a prototype of our method, demonstrating the ability to group and aggregate the data without the loss of vital network details for further detailed analysis.</dcterms:abstract>
    <dcterms:issued>2018-07</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-28T13:46:50Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-28T13:46:50Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44749"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kim, Jinman</dc:creator>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Adapted K-Core Decomposition and Visualization for Functional Magnetic Resonance Imaging Connectivity Networks</dcterms:title>
    <dc:creator>de Ridder, Michael</dc:creator>
    <dc:contributor>Kim, Jinman</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen