Publikation:

Visual Analytics of Volunteered Geographic Information : Detection and Investigation of Urban Heat Islands

Lade...
Vorschaubild

Dateien

Seebacher_2-10h0gdqvi3puu9.pdf
Seebacher_2-10h0gdqvi3puu9.pdfGröße: 516.37 KBDownloads: 565

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Computer Graphics and Applications. 2019, 39(5), pp. 83-95. ISSN 0272-1716. eISSN 1558-1756. Available under: doi: 10.1109/MCG.2019.2926242

Zusammenfassung

Urban heat islands are local areas where the temperature is much higher than in the vicinity and are a modern phenomenon that occurs mainly in highly developed areas, such as large cities. This effect has a negative impact on energy management in buildings and also has a direct impact on human health, especially for elderly people. With the advent of volunteered geographic information from private weather station networks, more high resolution data is now available within cities to better analyze this effect. However, such data sets are large and have heterogeneous characteristics requiring visual-interactive applications to support further analysis. We use machine learning methods to predict urban heat islands occurrences and utilize temporal and spatio-temporal visualizations to contextualize the emergence of urban heat islands to comprehend the influencing causes and their effects. Subsequently, we demonstrate the analysis capabilities of our application by presenting two use cases.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Urban Heat Islands, Visual Analytics, Spatio-Temporal Visualization, Analysis, Predictive Analytics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SEEBACHER, Daniel, Matthias MILLER, Tom POLK, Johannes FUCHS, Daniel A. KEIM, 2019. Visual Analytics of Volunteered Geographic Information : Detection and Investigation of Urban Heat Islands. In: IEEE Computer Graphics and Applications. 2019, 39(5), pp. 83-95. ISSN 0272-1716. eISSN 1558-1756. Available under: doi: 10.1109/MCG.2019.2926242
BibTex
@article{Seebacher2019-09-01Visua-46246,
  year={2019},
  doi={10.1109/MCG.2019.2926242},
  title={Visual Analytics of Volunteered Geographic Information : Detection and Investigation of Urban Heat Islands},
  number={5},
  volume={39},
  issn={0272-1716},
  journal={IEEE Computer Graphics and Applications},
  pages={83--95},
  author={Seebacher, Daniel and Miller, Matthias and Polk, Tom and Fuchs, Johannes and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46246">
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Seebacher, Daniel</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46246"/>
    <dc:contributor>Polk, Tom</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Miller, Matthias</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-08T13:27:26Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Urban heat islands are local areas where the temperature is much higher than in the vicinity and are a modern phenomenon that occurs mainly in highly developed areas, such as large cities. This effect has a negative impact on energy management in buildings and also has a direct impact on human health, especially for elderly people. With the advent of volunteered geographic information from private weather station networks, more high resolution data is now available within cities to better analyze this effect. However, such data sets are large and have heterogeneous characteristics requiring visual-interactive applications to support further analysis. We use machine learning methods to predict urban heat islands occurrences and utilize temporal and spatio-temporal visualizations to contextualize the emergence of urban heat islands to comprehend the influencing causes and their effects. Subsequently, we demonstrate the analysis capabilities of our application by presenting two use cases.</dcterms:abstract>
    <dc:creator>Fuchs, Johannes</dc:creator>
    <dc:creator>Polk, Tom</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46246/1/Seebacher_2-10h0gdqvi3puu9.pdf"/>
    <dc:contributor>Seebacher, Daniel</dc:contributor>
    <dcterms:issued>2019-09-01</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Miller, Matthias</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46246/1/Seebacher_2-10h0gdqvi3puu9.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-08T13:27:26Z</dc:date>
    <dc:contributor>Fuchs, Johannes</dc:contributor>
    <dcterms:title>Visual Analytics of Volunteered Geographic Information : Detection and Investigation of Urban Heat Islands</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen