Visual Analytics of Volunteered Geographic Information : Detection and Investigation of Urban Heat Islands
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Urban heat islands are local areas where the temperature is much higher than in the vicinity and are a modern phenomenon that occurs mainly in highly developed areas, such as large cities. This effect has a negative impact on energy management in buildings and also has a direct impact on human health, especially for elderly people. With the advent of volunteered geographic information from private weather station networks, more high resolution data is now available within cities to better analyze this effect. However, such data sets are large and have heterogeneous characteristics requiring visual-interactive applications to support further analysis. We use machine learning methods to predict urban heat islands occurrences and utilize temporal and spatio-temporal visualizations to contextualize the emergence of urban heat islands to comprehend the influencing causes and their effects. Subsequently, we demonstrate the analysis capabilities of our application by presenting two use cases.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SEEBACHER, Daniel, Matthias MILLER, Tom POLK, Johannes FUCHS, Daniel A. KEIM, 2019. Visual Analytics of Volunteered Geographic Information : Detection and Investigation of Urban Heat Islands. In: IEEE Computer Graphics and Applications. 2019, 39(5), pp. 83-95. ISSN 0272-1716. eISSN 1558-1756. Available under: doi: 10.1109/MCG.2019.2926242BibTex
@article{Seebacher2019-09-01Visua-46246, year={2019}, doi={10.1109/MCG.2019.2926242}, title={Visual Analytics of Volunteered Geographic Information : Detection and Investigation of Urban Heat Islands}, number={5}, volume={39}, issn={0272-1716}, journal={IEEE Computer Graphics and Applications}, pages={83--95}, author={Seebacher, Daniel and Miller, Matthias and Polk, Tom and Fuchs, Johannes and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46246"> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:creator>Seebacher, Daniel</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46246"/> <dc:contributor>Polk, Tom</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Miller, Matthias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-08T13:27:26Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Urban heat islands are local areas where the temperature is much higher than in the vicinity and are a modern phenomenon that occurs mainly in highly developed areas, such as large cities. This effect has a negative impact on energy management in buildings and also has a direct impact on human health, especially for elderly people. With the advent of volunteered geographic information from private weather station networks, more high resolution data is now available within cities to better analyze this effect. However, such data sets are large and have heterogeneous characteristics requiring visual-interactive applications to support further analysis. We use machine learning methods to predict urban heat islands occurrences and utilize temporal and spatio-temporal visualizations to contextualize the emergence of urban heat islands to comprehend the influencing causes and their effects. Subsequently, we demonstrate the analysis capabilities of our application by presenting two use cases.</dcterms:abstract> <dc:creator>Fuchs, Johannes</dc:creator> <dc:creator>Polk, Tom</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46246/1/Seebacher_2-10h0gdqvi3puu9.pdf"/> <dc:contributor>Seebacher, Daniel</dc:contributor> <dcterms:issued>2019-09-01</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Miller, Matthias</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46246/1/Seebacher_2-10h0gdqvi3puu9.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-08T13:27:26Z</dc:date> <dc:contributor>Fuchs, Johannes</dc:contributor> <dcterms:title>Visual Analytics of Volunteered Geographic Information : Detection and Investigation of Urban Heat Islands</dcterms:title> </rdf:Description> </rdf:RDF>