Publikation:

The Influence of Sample Size on Parameter Estimates in Three-Level Random-Effects Models

Lade...
Vorschaubild

Dateien

Kerkhoff_2-10h3esfj2wt733.pdf
Kerkhoff_2-10h3esfj2wt733.pdfGröße: 1.07 MBDownloads: 414

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Frontiers in Psychology. 2019, 10, 1067. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2019.01067

Zusammenfassung

In educational psychology, observational units are oftentimes nested within superordinate groups. Researchers need to account for hierarchy in the data by means of multilevel modeling, but especially in three-level longitudinal models, it is often unclear which sample size is necessary for reliable parameter estimation. To address this question, we generated a population dataset based on a study in the field of educational psychology, consisting of 3000 classrooms (level-3) with 55000 students (level-2) measured at 5 occasions (level-1), including predictors on each level and interaction effects. Drawing from this data, we realized 1000 random samples each for various sample and missing value conditions and compared analysis results with the true population parameters. We found that sampling at least 15 level-2 units each in 35 level-3 units results in unbiased fixed effects estimates, whereas higher-level random effects variance estimates require larger samples. Overall, increasing the level-2 sample size most strongly improves estimation soundness. We further discuss how data characteristics influence parameter estimation and provide specific sample size recommendations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KERKHOFF, Denny, Fridtjof W. NUSSBECK, 2019. The Influence of Sample Size on Parameter Estimates in Three-Level Random-Effects Models. In: Frontiers in Psychology. 2019, 10, 1067. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2019.01067
BibTex
@article{Kerkhoff2019-05-21Influ-45944,
  year={2019},
  doi={10.3389/fpsyg.2019.01067},
  title={The Influence of Sample Size on Parameter Estimates in Three-Level Random-Effects Models},
  volume={10},
  journal={Frontiers in Psychology},
  author={Kerkhoff, Denny and Nussbeck, Fridtjof W.},
  note={Article Number: 1067}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45944">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-05T12:39:16Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45944/1/Kerkhoff_2-10h3esfj2wt733.pdf"/>
    <dcterms:issued>2019-05-21</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45944/1/Kerkhoff_2-10h3esfj2wt733.pdf"/>
    <dcterms:abstract xml:lang="eng">In educational psychology, observational units are oftentimes nested within superordinate groups. Researchers need to account for hierarchy in the data by means of multilevel modeling, but especially in three-level longitudinal models, it is often unclear which sample size is necessary for reliable parameter estimation. To address this question, we generated a population dataset based on a study in the field of educational psychology, consisting of 3000 classrooms (level-3) with 55000 students (level-2) measured at 5 occasions (level-1), including predictors on each level and interaction effects. Drawing from this data, we realized 1000 random samples each for various sample and missing value conditions and compared analysis results with the true population parameters. We found that sampling at least 15 level-2 units each in 35 level-3 units results in unbiased fixed effects estimates, whereas higher-level random effects variance estimates require larger samples. Overall, increasing the level-2 sample size most strongly improves estimation soundness. We further discuss how data characteristics influence parameter estimation and provide specific sample size recommendations.</dcterms:abstract>
    <dc:contributor>Kerkhoff, Denny</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45944"/>
    <dc:contributor>Nussbeck, Fridtjof W.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-05T12:39:16Z</dcterms:available>
    <dcterms:title>The Influence of Sample Size on Parameter Estimates in Three-Level Random-Effects Models</dcterms:title>
    <dc:creator>Nussbeck, Fridtjof W.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Kerkhoff, Denny</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen