Publikation:

Total nonnegativity of matrices related to polynomial roots and poles of rational functions

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Mathematical Analysis and Applications. 2016, 434(1), pp. 780-797. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2015.08.078

Zusammenfassung

In this paper totally nonnegative (positive) matrices are considered which are matrices having all their minors nonnegative (positve); the almost totally positive matrices form a class between the totally nonnegative matrices and the totally positive ones. An efficient determinantal test based on the Cauchon algorithm for checking a given matrix for falling in one of these three classes of matrices is applied to matrices which are related to roots of polynomials and poles of rational functions, specifically the Hankel matrix associated with the Laurent series at infinity of a rational function and matrices of Hurwitz type associated with polynomials. In both cases it is concluded from properties of one or two finite sections of the infinite matrix that the infinite matrix itself has these or related properties. Then the results are applied to derive a sufficient condition for the Hurwitz stability of an interval family of polynomials. Finally, interval problems for a subclass of the rational functions, viz. R-functions, are investigated. These problems include invariance of exclusively positive poles and exclusively negative roots in the presence of variation of the coefficients of the polynomials within given intervals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Totally nonnegative matrix, totally positive matrix, Hurwitz matrix, Hankel matrix, R-function, interval polynomial

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ADM, Mohammad, Jürgen GARLOFF, Jihad TITI, 2016. Total nonnegativity of matrices related to polynomial roots and poles of rational functions. In: Journal of Mathematical Analysis and Applications. 2016, 434(1), pp. 780-797. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2015.08.078
BibTex
@article{Adm2016-02Total-31928,
  year={2016},
  doi={10.1016/j.jmaa.2015.08.078},
  title={Total nonnegativity of matrices related to polynomial roots and poles of rational functions},
  number={1},
  volume={434},
  issn={0022-247X},
  journal={Journal of Mathematical Analysis and Applications},
  pages={780--797},
  author={Adm, Mohammad and Garloff, Jürgen and Titi, Jihad}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31928">
    <dc:language>eng</dc:language>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-07T11:47:13Z</dc:date>
    <dcterms:title>Total nonnegativity of matrices related to polynomial roots and poles of rational functions</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-07T11:47:13Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31928"/>
    <dcterms:abstract xml:lang="eng">In this paper  totally nonnegative (positive) matrices are considered which are matrices having all their minors nonnegative (positve); the almost totally positive matrices form a class between the totally nonnegative matrices and the totally positive ones. An efficient determinantal test based on the Cauchon algorithm for checking a given matrix for falling in one of these three classes of matrices is applied to matrices which are related to roots of polynomials and poles of rational functions, specifically the Hankel matrix associated with the Laurent series at infinity of a rational function and matrices of Hurwitz type associated with polynomials. In both cases it is concluded from properties of one or two finite sections of the infinite matrix that the infinite matrix itself has these or related properties. Then the results are applied to derive a sufficient condition for the Hurwitz stability of an interval family of polynomials. Finally, interval problems for a subclass of the rational functions, viz. R-functions, are investigated. These problems include invariance of exclusively positive poles and exclusively negative roots in the presence of variation of the coefficients of the polynomials within given intervals.</dcterms:abstract>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Adm, Mohammad</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2016-02</dcterms:issued>
    <dc:contributor>Titi, Jihad</dc:contributor>
    <dc:creator>Titi, Jihad</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Adm, Mohammad</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen