Publikation:

Estimating uncertainty and reliability of social network data using Bayesian inference

Lade...
Vorschaubild

Dateien

Farine_2-10wn6e297fc9j9.pdf
Farine_2-10wn6e297fc9j9.pdfGröße: 708.19 KBDownloads: 252

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Royal Society Open Science. 2015, 2(9), 150367. eISSN 2054-5703. Available under: doi: 10.1098/rsos.150367

Zusammenfassung

Social network analysis provides a useful lens through which to view the structure of animal societies, and as a result its use is increasingly widespread. One challenge that many studies of animal social networks face is dealing with limited sample sizes, which introduces the potential for a high level of uncertainty in estimating the rates of association or interaction between individuals. We present a method based on Bayesian inference to incorporate uncertainty into network analyses. We test the reliability of this method at capturing both local and global properties of simulated networks, and compare it to a recently suggested method based on bootstrapping. Our results suggest that Bayesian inference can provide useful information about the underlying certainty in an observed network. When networks are well sampled, observed networks approach the real underlying social structure. However, when sampling is sparse, Bayesian inferred networks can provide realistic uncertainty estimates around edge weights. We also suggest a potential method for estimating the reliability of an observed network given the amount of sampling performed. This paper highlights how relatively simple procedures can be used to estimate uncertainty and reliability in studies using animal social network analysis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

interactions, uncertainty, social structure, group-living, social network analysis, Bayesian inference

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FARINE, Damien R., Ariana STRANDBURG-PESHKIN, 2015. Estimating uncertainty and reliability of social network data using Bayesian inference. In: Royal Society Open Science. 2015, 2(9), 150367. eISSN 2054-5703. Available under: doi: 10.1098/rsos.150367
BibTex
@article{Farine2015-09Estim-45008,
  year={2015},
  doi={10.1098/rsos.150367},
  title={Estimating uncertainty and reliability of social network data using Bayesian inference},
  number={9},
  volume={2},
  journal={Royal Society Open Science},
  author={Farine, Damien R. and Strandburg-Peshkin, Ariana},
  note={Article Number: 150367}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45008">
    <dcterms:issued>2015-09</dcterms:issued>
    <dc:creator>Strandburg-Peshkin, Ariana</dc:creator>
    <dcterms:title>Estimating uncertainty and reliability of social network data using Bayesian inference</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45008/3/Farine_2-10wn6e297fc9j9.pdf"/>
    <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45008/3/Farine_2-10wn6e297fc9j9.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-13T10:51:14Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <dc:creator>Farine, Damien R.</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Social network analysis provides a useful lens through which to view the structure of animal societies, and as a result its use is increasingly widespread. One challenge that many studies of animal social networks face is dealing with limited sample sizes, which introduces the potential for a high level of uncertainty in estimating the rates of association or interaction between individuals. We present a method based on Bayesian inference to incorporate uncertainty into network analyses. We test the reliability of this method at capturing both local and global properties of simulated networks, and compare it to a recently suggested method based on bootstrapping. Our results suggest that Bayesian inference can provide useful information about the underlying certainty in an observed network. When networks are well sampled, observed networks approach the real underlying social structure. However, when sampling is sparse, Bayesian inferred networks can provide realistic uncertainty estimates around edge weights. We also suggest a potential method for estimating the reliability of an observed network given the amount of sampling performed. This paper highlights how relatively simple procedures can be used to estimate uncertainty and reliability in studies using animal social network analysis.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45008"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-13T10:51:14Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen