Publikation: Counterexamples for Model Checking of Markov Decision Processes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The debugging of stochastic system models relies on the availability of diagnostic information. Classic probabilistic model checkers, which are based on iterated numerical probability matrix operations, do not provide such diagnostic information. In precursory work, we have devised counterexample generation methods for continuous- and discrete-time Markov Chains based on heuristics guided explicit state space search. In this paper we address the problem of generating diagnostic information, or counterexamples, for Markov Decision Processes (MDPs), which are a convenient formalism for modelling concurrent stochastic systems. We define the notion of counterexamples for MDPs in relation to an upwards-bounded PCTL formula. Next we present our approach to counterexample generation. We first use an adoption of Eppstein's algorithm for k-shortest paths in order to collect the most probable MDP execution traces contributing to a violation of the PCTL formula. We then use the data structure of AND/OR trees in order to adequately extract from the collected execution sequences the most informative counterexample and to compute its probability. In our experimental evaluation we show that our approach scales to models of realistic size, and that the collected diagnostic information is helpful in system debugging.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ALJAZZAR, Husain, Stefan LEUE, 2007. Counterexamples for Model Checking of Markov Decision ProcessesBibTex
@techreport{Aljazzar2007Count-5540, year={2007}, series={Technical Report, Chair for Software Engineering, University of Konstanz}, title={Counterexamples for Model Checking of Markov Decision Processes}, number={soft-08-01}, author={Aljazzar, Husain and Leue, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5540"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <dcterms:title>Counterexamples for Model Checking of Markov Decision Processes</dcterms:title> <dc:contributor>Aljazzar, Husain</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:18Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5540"/> <dc:creator>Aljazzar, Husain</dc:creator> <dcterms:issued>2007</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Leue, Stefan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:18Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5540/1/AljazzarLeue_TechRep08.pdf"/> <dcterms:abstract xml:lang="eng">The debugging of stochastic system models relies on the availability of diagnostic information. Classic probabilistic model checkers, which are based on iterated numerical probability matrix operations, do not provide such diagnostic information. In precursory work, we have devised counterexample generation methods for continuous- and discrete-time Markov Chains based on heuristics guided explicit state space search. In this paper we address the problem of generating diagnostic information, or counterexamples, for Markov Decision Processes (MDPs), which are a convenient formalism for modelling concurrent stochastic systems. We define the notion of counterexamples for MDPs in relation to an upwards-bounded PCTL formula. Next we present our approach to counterexample generation. We first use an adoption of Eppstein's algorithm for k-shortest paths in order to collect the most probable MDP execution traces contributing to a violation of the PCTL formula. We then use the data structure of AND/OR trees in order to adequately extract from the collected execution sequences the most informative counterexample and to compute its probability. In our experimental evaluation we show that our approach scales to models of realistic size, and that the collected diagnostic information is helpful in system debugging.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5540/1/AljazzarLeue_TechRep08.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Leue, Stefan</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>