Publikation: Modeling the forward CDS spreads with jumps
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the forward CDS in the framework of stochastic interest rates whose term structures are modeled in the sense of the Heath-Jarrow-Morton model with jumps adapted to a filtration $\bb F$(see \cite{Xiong-Kohlmann2010b}). Under the assumption that the density process of the default is a bounded $\bb F$-predictable process, we obtain a quadratic-exponential type system of BSDEs similar to \cite{Xiong-Kohlmann2010b} which always has a unique solution $(X,\theta,\vartheta)$. By the solution of such a system of BSDEs, we will describe the dynamics of the the pre-default values of the defaultable bond, the defaultable forward Libor rates and the restricted defaultable forward measure (see in \cite{Eberlein-Kluge-Schoenbucher-2006}) explicitly. Then we introduce another quadratic-exponential type system of BSDEs (called \textbf{adjoint system of BSDEs}) which also always has a unique solution, and using this solution, we describe the dynamic of the fair spread of the forward CDS with the tenor structure $\bb T ={a=T_0 < T_1 < \cdots< T_n=b}$ explicitly.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XIONG, Dewen, Michael KOHLMANN, 2012. Modeling the forward CDS spreads with jumps. In: Stochastic Analysis and Applications. 2012, 30(3), pp. 375-402. ISSN 0736-2994. Available under: doi: 10.1080/07362994.2012.668435BibTex
@article{Xiong2012Model-19120, year={2012}, doi={10.1080/07362994.2012.668435}, title={Modeling the forward CDS spreads with jumps}, number={3}, volume={30}, issn={0736-2994}, journal={Stochastic Analysis and Applications}, pages={375--402}, author={Xiong, Dewen and Kohlmann, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19120"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-24T07:08:38Z</dcterms:available> <dcterms:title>Modeling the forward CDS spreads with jumps</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19120"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>Publ. in: Stochastic Analysis and Applications ; 30 (2012), 3. - pp. 375-402</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:contributor>Kohlmann, Michael</dc:contributor> <dc:creator>Xiong, Dewen</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We consider the forward CDS in the framework of stochastic interest rates whose term structures are modeled in the sense of the Heath-Jarrow-Morton model with jumps adapted to a filtration $\bb F$(see \cite{Xiong-Kohlmann2010b}). Under the assumption that the density process of the default is a bounded $\bb F$-predictable process, we obtain a quadratic-exponential type system of BSDEs similar to \cite{Xiong-Kohlmann2010b} which always has a unique solution $(X,\theta,\vartheta)$. By the solution of such a system of BSDEs, we will describe the dynamics of the the pre-default values of the defaultable bond, the defaultable forward Libor rates and the restricted defaultable forward measure (see in \cite{Eberlein-Kluge-Schoenbucher-2006}) explicitly. Then we introduce another quadratic-exponential type system of BSDEs (called \textbf{adjoint system of BSDEs}) which also always has a unique solution, and using this solution, we describe the dynamic of the fair spread of the forward CDS with the tenor structure $\bb T =\{a=T_0 < T_1 < \cdots< T_n=b\}$ explicitly.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Xiong, Dewen</dc:contributor> <dc:creator>Kohlmann, Michael</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-24T07:08:38Z</dc:date> <dcterms:issued>2012</dcterms:issued> </rdf:Description> </rdf:RDF>