Publikation: Parameter Identification Problems of ODEs with Uncertain Initial Conditions
Lade...
Dateien
Datum
2022
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published
Erschienen in
Zusammenfassung
This thesis gives an insight on gradient descent methods and how they can be applied to solve parameter identification problems pertaining to an ordinary differential equation (ODE) with unknown parameters. Different gradient descent methods such as stochastic gradient descent, projected gradient descent and projected stochastic gradient descent are outlined and their theoretical convergence behaviour is proven. Further, the theoretical foundation is supported by several numerical experiments as the algorithms' practical performances are analysed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
numerical optimisation, gradient descent, stochastic gradient descent, projected stochastic gradient descent, parameter identification
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SAUER, Felix, 2022. Parameter Identification Problems of ODEs with Uncertain Initial Conditions [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Sauer2022Param-59466, year={2022}, title={Parameter Identification Problems of ODEs with Uncertain Initial Conditions}, address={Konstanz}, school={Universität Konstanz}, author={Sauer, Felix} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59466"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-12-09T07:45:14Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59466"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59466/3/Sauer_2-10zj4d9tn9lpp6.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Parameter Identification Problems of ODEs with Uncertain Initial Conditions</dcterms:title> <dcterms:abstract xml:lang="eng">This thesis gives an insight on gradient descent methods and how they can be applied to solve parameter identification problems pertaining to an ordinary differential equation (ODE) with unknown parameters. Different gradient descent methods such as stochastic gradient descent, projected gradient descent and projected stochastic gradient descent are outlined and their theoretical convergence behaviour is proven. Further, the theoretical foundation is supported by several numerical experiments as the algorithms' practical performances are analysed.</dcterms:abstract> <dc:contributor>Sauer, Felix</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:issued>2022</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59466/3/Sauer_2-10zj4d9tn9lpp6.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-12-09T07:45:14Z</dc:date> <dc:creator>Sauer, Felix</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2022
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja