Publikation:

Semantic Concept Spaces : Guided Topic Model Refinement using Word-Embedding Projections

Lade...
Vorschaubild

Dateien

El-Assady_2-112hj6g6w8rj81.pdf
El-Assady_2-112hj6g6w8rj81.pdfGröße: 3.38 MBDownloads: 567

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), pp. 1001-1011. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2019.2934654

Zusammenfassung

We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of potential conflicts and problems, and (3) readjust the semantic relation of concepts based on their understanding, directly influencing the topic modeling. These tasks are supported by an interactive visual analytics workspace that uses word-embedding projections to define concept regions which can then be refined. The user-refined concepts are independent of a particular document collection and can be transferred to related corpora. All user interactions within the concept space directly affect the semantic relations of the underlying vector space model, which, in turn, change the topic modeling. In addition to direct manipulation, our system guides the users' decisionmaking process through recommended interactions that point out potential improvements. This targeted refinement aims at minimizing the feedback required for an efficient human-in-the-loop process. We confirm the improvements achieved through our approach in two user studies that show topic model quality improvements through our visual knowledge externalization and learning process.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EL-ASSADY, Mennatallah, Rebecca KEHLBECK, Christopher COLLINS, Daniel A. KEIM, Oliver DEUSSEN, 2020. Semantic Concept Spaces : Guided Topic Model Refinement using Word-Embedding Projections. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), pp. 1001-1011. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2019.2934654
BibTex
@article{ElAssady2020-01Seman-47042,
  year={2020},
  doi={10.1109/TVCG.2019.2934654},
  title={Semantic Concept Spaces : Guided Topic Model Refinement using Word-Embedding Projections},
  number={1},
  volume={26},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={1001--1011},
  author={El-Assady, Mennatallah and Kehlbeck, Rebecca and Collins, Christopher and Keim, Daniel A. and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47042">
    <dc:creator>Collins, Christopher</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-26T13:00:31Z</dcterms:available>
    <dc:contributor>Collins, Christopher</dc:contributor>
    <dc:creator>Kehlbeck, Rebecca</dc:creator>
    <dcterms:abstract xml:lang="eng">We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of potential conflicts and problems, and (3) readjust the semantic relation of concepts based on their understanding, directly influencing the topic modeling. These tasks are supported by an interactive visual analytics workspace that uses word-embedding projections to define concept regions which can then be refined. The user-refined concepts are independent of a particular document collection and can be transferred to related corpora. All user interactions within the concept space directly affect the semantic relations of the underlying vector space model, which, in turn, change the topic modeling. In addition to direct manipulation, our system guides the users' decisionmaking process through recommended interactions that point out potential improvements. This targeted refinement aims at minimizing the feedback required for an efficient human-in-the-loop process. We confirm the improvements achieved through our approach in two user studies that show topic model quality improvements through our visual knowledge externalization and learning process.</dcterms:abstract>
    <dcterms:issued>2020-01</dcterms:issued>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-26T13:00:31Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47042/1/El-Assady_2-112hj6g6w8rj81.pdf"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47042/1/El-Assady_2-112hj6g6w8rj81.pdf"/>
    <dcterms:title>Semantic Concept Spaces : Guided Topic Model Refinement using Word-Embedding Projections</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Kehlbeck, Rebecca</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47042"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen