Publikation: Investment in online self-evaluation tests : a theoretical approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Background
Large-scale traumatic events may burden any affected public health system with consequential charges. One major post-disaster, expense factor emerges form early psychological interventions and subsequent, posttraumatic mental health care. Due to the constant increase in mental health care costs, also post-disaster public mental health requires best possible, cost-effective care systems. Screening and monitoring the affected population might be one such area to optimize the charges.
Methods
This paper analyzes the potential cost-effectiveness of monitoring a psychologically traumatized population and to motivate individuals at risk to seek early treatment. As basis for our model served Grossman's health production function, which was modified according to fundamental concepts of cost-benefit analyzes, to match the basic conditions of online monitoring strategies. We then introduce some fundamental concepts of cost-benefit analysis.
Results
When performing cost-benefit analyses, policy makers have to consider both direct costs (caused by treatment) and indirect costs (due to non-productivity). Considering both costs sources we find that the use of Internet-based psychometric screening instruments may reduce the duration of future treatment, psychological burden and treatment costs.
Conclusion
The identification of individuals at risk for PTSD following a disaster may help organizations prevent both the human and the economic costs of this disease. Consequently future research on mental health issues should put more emphasis on the importance of monitoring to detect early PTSD and focus the most effective resources within early treatment and morbidity prevention.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DE GARA, Francesco, William T GALLO, Jonathan I BISSON, Jérôme ENDRASS, Stefan VETTER, 2008. Investment in online self-evaluation tests : a theoretical approach. In: Journal of Trauma Management & Outcomes. 2008, 2(1), 3. eISSN 1752-2897. Available under: doi: 10.1186/1752-2897-2-3BibTex
@article{deGara2008Inves-39252, year={2008}, doi={10.1186/1752-2897-2-3}, title={Investment in online self-evaluation tests : a theoretical approach}, number={1}, volume={2}, journal={Journal of Trauma Management & Outcomes}, author={de Gara, Francesco and Gallo, William T and Bisson, Jonathan I and Endrass, Jérôme and Vetter, Stefan}, note={Article Number: 3} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39252"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39252"/> <dcterms:issued>2008</dcterms:issued> <dc:creator>Bisson, Jonathan I</dc:creator> <dc:contributor>Bisson, Jonathan I</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-13T09:42:57Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39252/3/Gara_0-385032.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-13T09:42:57Z</dcterms:available> <dc:contributor>Vetter, Stefan</dc:contributor> <dcterms:abstract xml:lang="eng">Background<br /><br />Large-scale traumatic events may burden any affected public health system with consequential charges. One major post-disaster, expense factor emerges form early psychological interventions and subsequent, posttraumatic mental health care. Due to the constant increase in mental health care costs, also post-disaster public mental health requires best possible, cost-effective care systems. Screening and monitoring the affected population might be one such area to optimize the charges.<br /><br />Methods<br /><br />This paper analyzes the potential cost-effectiveness of monitoring a psychologically traumatized population and to motivate individuals at risk to seek early treatment. As basis for our model served Grossman's health production function, which was modified according to fundamental concepts of cost-benefit analyzes, to match the basic conditions of online monitoring strategies. We then introduce some fundamental concepts of cost-benefit analysis.<br /><br />Results<br /><br />When performing cost-benefit analyses, policy makers have to consider both direct costs (caused by treatment) and indirect costs (due to non-productivity). Considering both costs sources we find that the use of Internet-based psychometric screening instruments may reduce the duration of future treatment, psychological burden and treatment costs.<br /><br />Conclusion<br /><br />The identification of individuals at risk for PTSD following a disaster may help organizations prevent both the human and the economic costs of this disease. Consequently future research on mental health issues should put more emphasis on the importance of monitoring to detect early PTSD and focus the most effective resources within early treatment and morbidity prevention.</dcterms:abstract> <dc:creator>Gallo, William T</dc:creator> <dc:contributor>de Gara, Francesco</dc:contributor> <dc:rights>Attribution 2.0 Generic</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39252/3/Gara_0-385032.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/2.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gallo, William T</dc:contributor> <dc:creator>Vetter, Stefan</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>de Gara, Francesco</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Investment in online self-evaluation tests : a theoretical approach</dcterms:title> <dc:contributor>Endrass, Jérôme</dc:contributor> <dc:creator>Endrass, Jérôme</dc:creator> </rdf:Description> </rdf:RDF>