Risk Patterns and Correlated Brain Activities : Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Bömmel, Alena van
Song, Song
Majer, Piotr
Heekeren, Hauke R.
Härdle, Wolfgang K.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Psychometrika. 2014, 79(3), pp. 489-514. ISSN 0033-3123. eISSN 1860-0980. Available under: doi: 10.1007/s11336-013-9352-2
Zusammenfassung

Decision making usually involves uncertainty and risk. Understanding which parts of the human brain are activated during decisions under risk and which neural processes underly (risky) investment decisions are important goals in neuroeconomics. Here, we analyze functional magnetic resonance imaging (fMRI) data on 17 subjects who were exposed to an investment decision task from Mohr, Biele, Krugel, Li, and Heekeren (in NeuroImage 49, 2556–2563, 2010b). We obtain a time series of three-dimensional images of the blood-oxygen-level dependent (BOLD) fMRI signals. We apply a panel version of the dynamic semiparametric factor model (DSFM) presented in Park, Mammen, Wolfgang, and Borak (in Journal of the American Statistical Association 104(485), 284–298, 2009) and identify task-related activations in space and dynamics in time. With the panel DSFM (PDSFM) we can capture the dynamic behavior of the specific brain regions common for all subjects and represent the high-dimensional time-series data in easily interpretable low-dimensional dynamic factors without large loss of variability. Further, we classify the risk attitudes of all subjects based on the estimated low-dimensional time series. Our classification analysis successfully confirms the estimated risk attitudes derived directly from subjects’ decision behavior.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BÖMMEL, Alena van, Song SONG, Piotr MAJER, Peter N. C. MOHR, Hauke R. HEEKEREN, Wolfgang K. HÄRDLE, 2014. Risk Patterns and Correlated Brain Activities : Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study. In: Psychometrika. 2014, 79(3), pp. 489-514. ISSN 0033-3123. eISSN 1860-0980. Available under: doi: 10.1007/s11336-013-9352-2
BibTex
@article{Bommel2014-07Patte-26272,
  year={2014},
  doi={10.1007/s11336-013-9352-2},
  title={Risk Patterns and Correlated Brain Activities : Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study},
  number={3},
  volume={79},
  issn={0033-3123},
  journal={Psychometrika},
  pages={489--514},
  author={Bömmel, Alena van and Song, Song and Majer, Piotr and Mohr, Peter N. C. and Heekeren, Hauke R. and Härdle, Wolfgang K.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26272">
    <dc:creator>Härdle, Wolfgang K.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-07T09:37:41Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26272"/>
    <dc:creator>Majer, Piotr</dc:creator>
    <dcterms:issued>2014-07</dcterms:issued>
    <dc:contributor>Majer, Piotr</dc:contributor>
    <dc:contributor>Bömmel, Alena van</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Mohr, Peter N. C.</dc:contributor>
    <dcterms:title>Risk Patterns and Correlated Brain Activities : Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:abstract xml:lang="eng">Decision making usually involves uncertainty and risk. Understanding which parts of the human brain are activated during decisions under risk and which neural processes underly (risky) investment decisions are important goals in neuroeconomics. Here, we analyze functional magnetic resonance imaging (fMRI) data on 17 subjects who were exposed to an investment decision task from Mohr, Biele, Krugel, Li, and Heekeren (in NeuroImage 49, 2556–2563, 2010b). We obtain a time series of three-dimensional images of the blood-oxygen-level dependent (BOLD) fMRI signals. We apply a panel version of the dynamic semiparametric factor model (DSFM) presented in Park, Mammen, Wolfgang, and Borak (in Journal of the American Statistical Association 104(485), 284–298, 2009) and identify task-related activations in space and dynamics in time. With the panel DSFM (PDSFM) we can capture the dynamic behavior of the specific brain regions common for all subjects and represent the high-dimensional time-series data in easily interpretable low-dimensional dynamic factors without large loss of variability. Further, we classify the risk attitudes of all subjects based on the estimated low-dimensional time series. Our classification analysis successfully confirms the estimated risk attitudes derived directly from subjects’ decision behavior.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Mohr, Peter N. C.</dc:creator>
    <dc:contributor>Heekeren, Hauke R.</dc:contributor>
    <dc:creator>Heekeren, Hauke R.</dc:creator>
    <dc:creator>Song, Song</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-07T09:37:41Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Härdle, Wolfgang K.</dc:contributor>
    <dc:contributor>Song, Song</dc:contributor>
    <dc:creator>Bömmel, Alena van</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet