Publikation: Convex Relaxation for Multilabel Problems with Product Label Spaces
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Convex relaxations for continuous multilabel problems have attracted a lot of interest recently [1,2,3,4,5]. Unfortunately, in previous methods, the runtime and memory requirements scale linearly in the total number of labels, making them very inefficient and often unapplicable for problems with higher dimensional label spaces. In this paper, we propose a reduction technique for the case that the label space is a product space, and introduce proper regularizers. The resulting convex relaxation requires orders of magnitude less memory and computation time than previously, which enables us to apply it to large-scale problems like optic flow, stereo with occlusion detection, and segmentation into a very large number of regions. Despite the drastic gain in performance, we do not arrive at less accurate solutions than the original relaxation. Using the novel method, we can for the first time efficiently compute solutions to the optic flow functional which are within provable bounds of typically 5% of the global optimum.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GOLDLÜCKE, Bastian, Daniel CREMERS, 2010. Convex Relaxation for Multilabel Problems with Product Label Spaces. 11th ECCV 2010. Heraklion, Crete, Greece, 5. Sept. 2010 - 11. Sept. 2010. In: DANIILIDIS, Kostas, ed. and others. Computer Vision - ECCV 2010 : 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, proceedings, Part V. Berlin: Springer, 2010, pp. 225-238. Lecture Notes in Computer Science. 6315. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-642-15554-3. Available under: doi: 10.1007/978-3-642-15555-0_17BibTex
@inproceedings{Goldlucke2010Conve-40999, year={2010}, doi={10.1007/978-3-642-15555-0_17}, title={Convex Relaxation for Multilabel Problems with Product Label Spaces}, number={6315}, isbn={978-3-642-15554-3}, issn={0302-9743}, publisher={Springer}, address={Berlin}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision - ECCV 2010 : 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, proceedings, Part V}, pages={225--238}, editor={Daniilidis, Kostas}, author={Goldlücke, Bastian and Cremers, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40999"> <dc:creator>Goldlücke, Bastian</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Convex relaxations for continuous multilabel problems have attracted a lot of interest recently [1,2,3,4,5]. Unfortunately, in previous methods, the runtime and memory requirements scale linearly in the total number of labels, making them very inefficient and often unapplicable for problems with higher dimensional label spaces. In this paper, we propose a reduction technique for the case that the label space is a product space, and introduce proper regularizers. The resulting convex relaxation requires orders of magnitude less memory and computation time than previously, which enables us to apply it to large-scale problems like optic flow, stereo with occlusion detection, and segmentation into a very large number of regions. Despite the drastic gain in performance, we do not arrive at less accurate solutions than the original relaxation. Using the novel method, we can for the first time efficiently compute solutions to the optic flow functional which are within provable bounds of typically 5% of the global optimum.</dcterms:abstract> <dc:contributor>Goldlücke, Bastian</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-21T09:31:52Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-21T09:31:52Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40999"/> <dc:creator>Cremers, Daniel</dc:creator> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Cremers, Daniel</dc:contributor> <dcterms:title>Convex Relaxation for Multilabel Problems with Product Label Spaces</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>