Publikation:

Pivot tightening for direct methods for solving symmetric positive definite systems of linear interval equations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computing. 2011, 94(2-4), pp. 97-107. ISSN 0010-485X. eISSN 1436-5057. Available under: doi: 10.1007/s00607-011-0159-7

Zusammenfassung

The paper considers systems of linear interval equations, i. e., linear systems where the coefficients of the matrix and the right hand side vary between given bounds. We focus on symmetric matrices and consider direct methods for the enclosure of the solution set of such a system. One of these methods is the interval Cholesky method which is obtained from the ordinary Cholesky decomposition by replacing the real numbers by the related intervals and the real operations by the respective interval operations. We present a method by which the diagonal entries of the interval Cholesky factor can be tightened for positive definite interval matrices, such that a breakdown of the algorithm can be prevented. In the case of positive definite symmetric Toeplitz matrices, a further tightening of the diagonal entries and also of other entries of the Cholesky factor is possible. Finally, we numerically compare the interval Cholesky method with interval variants of two methods which exploit the Toeplitz structure with respect to the computing time and quality of the enclosure of the solution set.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Positive definite interval matrix, interval Cholesky method, Toeplitz system

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GARLOFF, Jürgen, 2011. Pivot tightening for direct methods for solving symmetric positive definite systems of linear interval equations. In: Computing. 2011, 94(2-4), pp. 97-107. ISSN 0010-485X. eISSN 1436-5057. Available under: doi: 10.1007/s00607-011-0159-7
BibTex
@article{Garloff2011Pivot-21484,
  year={2011},
  doi={10.1007/s00607-011-0159-7},
  title={Pivot tightening for direct methods for solving symmetric  positive definite systems of linear interval equations},
  number={2-4},
  volume={94},
  issn={0010-485X},
  journal={Computing},
  pages={97--107},
  author={Garloff, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21484">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-21T19:51:56Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21484"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Computing ; 94 (2012), 2-4. - S. 97-107</dcterms:bibliographicCitation>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dcterms:abstract xml:lang="eng">The paper considers systems of linear interval equations, i. e., linear systems where the coefficients of the matrix and the right hand side vary between given bounds. We focus on symmetric matrices and consider direct methods for the enclosure of the solution set of such a system. One of these methods is the interval Cholesky method which is obtained from the ordinary Cholesky decomposition by replacing the real numbers by the related intervals and the real operations by the respective interval operations. We present a method by which the diagonal entries of the interval Cholesky factor can be tightened for positive definite interval matrices, such that a breakdown of the algorithm can be prevented. In the case of positive definite symmetric Toeplitz matrices, a further tightening of the diagonal entries and also of other entries of the Cholesky factor is possible. Finally, we numerically compare the interval Cholesky method  with interval variants of two methods which exploit the Toeplitz structure with respect to the computing time and quality of the enclosure of the solution set.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-21T19:51:56Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <dcterms:title>Pivot tightening for direct methods for solving symmetric  positive definite systems of linear interval equations</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen