Publikation: Secondary "Smile"-gap in the density of states of a diffusive Josephson junction for a wide range of contact types
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The superconducting proximity effect leads to strong modifications of the local density of states in diffusive or chaotic cavity Josephson junctions, which displays a phase-dependent energy gap around the Fermi energy. The so-called minigap of the order of the Thouless energy ETh is related to the inverse dwell time in the diffusive region in the limit ETh << delta, where delta is the superconducting energy gap. In the opposite limit of a large Thouless energy ETh >> delta a small new feature has recently attracted attention, namely the appearance of a further secondary gap, which is around two orders of magnitude smaller compared to the usual superconducting gap. It appears in a chaotic cavity just below the superconducting gap edge delta and vanishes for some value of the phase difference between the superconductors. We extend previous theory restricted to a normal cavity connected to two superconductors through ballistic contacts to a wider range of contact types. We show that the existence of the secondary gap is not limited to ballistic contacts, but is a more general property of such systems. Furthermore we derive a criterion which directly relates the existence of a secondary gap to the presence of small transmission eigenvalues of the contacts. For generic continuous distributions of transmission eigenvalues of the contacts no secondary gap exists, although we observe a singular behavior of the density of states at delta. Finally we provide a simple one-dimensional scattering model which is able to explain the characteristic "smile" shape of the secondary gap.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
REUTLINGER, Johannes, Leonid I. GLAZMAN, Yuli V. NAZAROV, Wolfgang BELZIG, 2014. Secondary "Smile"-gap in the density of states of a diffusive Josephson junction for a wide range of contact typesBibTex
@unpublished{Reutlinger2014Secon-28216, year={2014}, title={Secondary "Smile"-gap in the density of states of a diffusive Josephson junction for a wide range of contact types}, author={Reutlinger, Johannes and Glazman, Leonid I. and Nazarov, Yuli V. and Belzig, Wolfgang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28216"> <dc:contributor>Reutlinger, Johannes</dc:contributor> <dc:creator>Belzig, Wolfgang</dc:creator> <dcterms:abstract xml:lang="eng">The superconducting proximity effect leads to strong modifications of the local density of states in diffusive or chaotic cavity Josephson junctions, which displays a phase-dependent energy gap around the Fermi energy. The so-called minigap of the order of the Thouless energy E<sub>Th</sub> is related to the inverse dwell time in the diffusive region in the limit E<sub>Th</sub> << delta, where delta is the superconducting energy gap. In the opposite limit of a large Thouless energy E<sub>Th</sub> >> delta a small new feature has recently attracted attention, namely the appearance of a further secondary gap, which is around two orders of magnitude smaller compared to the usual superconducting gap. It appears in a chaotic cavity just below the superconducting gap edge delta and vanishes for some value of the phase difference between the superconductors. We extend previous theory restricted to a normal cavity connected to two superconductors through ballistic contacts to a wider range of contact types. We show that the existence of the secondary gap is not limited to ballistic contacts, but is a more general property of such systems. Furthermore we derive a criterion which directly relates the existence of a secondary gap to the presence of small transmission eigenvalues of the contacts. For generic continuous distributions of transmission eigenvalues of the contacts no secondary gap exists, although we observe a singular behavior of the density of states at delta. Finally we provide a simple one-dimensional scattering model which is able to explain the characteristic "smile" shape of the secondary gap.</dcterms:abstract> <dc:contributor>Glazman, Leonid I.</dc:contributor> <dc:contributor>Belzig, Wolfgang</dc:contributor> <dc:creator>Nazarov, Yuli V.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-30T08:20:06Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28216"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28216/1/Reutlinger_282166.pdf"/> <dc:contributor>Nazarov, Yuli V.</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Reutlinger, Johannes</dc:creator> <dc:creator>Glazman, Leonid I.</dc:creator> <dcterms:issued>2014</dcterms:issued> <dcterms:title>Secondary "Smile"-gap in the density of states of a diffusive Josephson junction for a wide range of contact types</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28216/1/Reutlinger_282166.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-30T08:20:06Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>