Publikation:

Modelling a hormone-inspired controller for individual- and multi-modular robotic systems

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Schmickl, Thomas
Crailsheim, Karl

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematical and Computer Modelling of Dynamical Systems. Taylor & Francis. 2011, 17(3), pp. 221-242. ISSN 1387-3954. eISSN 1744-5051. Available under: doi: 10.1080/13873954.2011.557862

Zusammenfassung

For all living organisms, the ability to regulate internal homeostasis is a crucial feature. This ability to control variables around a set point is found frequently in the physiological networks of single cells and of higher organisms. Also, nutrient allocation and task selection in social insect colonies can be interpreted as homeostatic processes of a super-organism. And finally, behaviour can also represent such a control scheme. We show how a simple model of hormone regulation, inspired by simple biological organisms, can be used as a novel method to control the behaviour of autonomous robots. We demonstrate the formulation of such an artificial homeostatic hormone system (AHHS) by a set of linked difference equations and explain how the homeostatic control of behaviour is achieved by homeostatic control of the internal ‘hormonal’ state of the robot. The first task that we used to check the quality of our AHHS controllers was a very simple one, which is often a core functionality in controller programmes that are used in autonomous robots: obstacle avoidance. We demonstrate two implementations of such an AHHS controller that performs this task in differing levels of quality. Both controllers use the concept of homeostatic control of internal variables (hormones) and they extend this concept to also include the outside world of the robots into the controlling feedback loops: As they try to regulate internal hormone levels, they are forced to keep a homeostatic control of sensor values in a way that the desired goal ‘obstacle avoidance’ is achieved. Thus, the created behaviour is also a manifestation of the acts of homeostatic control. The controllers were evaluated using a stock-and-flow model that allowed sensitivity analysis and stability tests. Afterwards, we have also tested both controllers in a multi-agent simulation tool, which allowed us to predict the robots' behaviours in various habitats and group sizes. Finally, we demonstrate how this novel AHHS controller is suitable to control a multi-cellular robotic organism in an evolutionary robotics approach, which is used for self-programming in a gait-learning task. These examples shown in this article represent the first step in our research towards autonomous aggregation and coordination of robots to higher-level modular robotic organisms that consist of several joined autonomous robotic units. Finally, we plan to achieve such aggregation patterns and to control complex-shaped robotic organisms using AHHS controllers, as they are described here.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

modular robotics, stock-and-flow modelling, hormone controller, cybernetics, homeostasis, system dynamics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHMICKL, Thomas, Heiko HAMANN, Karl CRAILSHEIM, 2011. Modelling a hormone-inspired controller for individual- and multi-modular robotic systems. In: Mathematical and Computer Modelling of Dynamical Systems. Taylor & Francis. 2011, 17(3), pp. 221-242. ISSN 1387-3954. eISSN 1744-5051. Available under: doi: 10.1080/13873954.2011.557862
BibTex
@article{Schmickl2011Model-59716,
  year={2011},
  doi={10.1080/13873954.2011.557862},
  title={Modelling a hormone-inspired controller for individual- and multi-modular robotic systems},
  number={3},
  volume={17},
  issn={1387-3954},
  journal={Mathematical and Computer Modelling of Dynamical Systems},
  pages={221--242},
  author={Schmickl, Thomas and Hamann, Heiko and Crailsheim, Karl}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59716">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Crailsheim, Karl</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T12:17:33Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59716"/>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Crailsheim, Karl</dc:contributor>
    <dcterms:abstract xml:lang="eng">For all living organisms, the ability to regulate internal homeostasis is a crucial feature. This ability to control variables around a set point is found frequently in the physiological networks of single cells and of higher organisms. Also, nutrient allocation and task selection in social insect colonies can be interpreted as homeostatic processes of a super-organism. And finally, behaviour can also represent such a control scheme. We show how a simple model of hormone regulation, inspired by simple biological organisms, can be used as a novel method to control the behaviour of autonomous robots. We demonstrate the formulation of such an artificial homeostatic hormone system (AHHS) by a set of linked difference equations and explain how the homeostatic control of behaviour is achieved by homeostatic control of the internal ‘hormonal’ state of the robot. The first task that we used to check the quality of our AHHS controllers was a very simple one, which is often a core functionality in controller programmes that are used in autonomous robots: obstacle avoidance. We demonstrate two implementations of such an AHHS controller that performs this task in differing levels of quality. Both controllers use the concept of homeostatic control of internal variables (hormones) and they extend this concept to also include the outside world of the robots into the controlling feedback loops: As they try to regulate internal hormone levels, they are forced to keep a homeostatic control of sensor values in a way that the desired goal ‘obstacle avoidance’ is achieved. Thus, the created behaviour is also a manifestation of the acts of homeostatic control. The controllers were evaluated using a stock-and-flow model that allowed sensitivity analysis and stability tests. Afterwards, we have also tested both controllers in a multi-agent simulation tool, which allowed us to predict the robots' behaviours in various habitats and group sizes. Finally, we demonstrate how this novel AHHS controller is suitable to control a multi-cellular robotic organism in an evolutionary robotics approach, which is used for self-programming in a gait-learning task. These examples shown in this article represent the first step in our research towards autonomous aggregation and coordination of robots to higher-level modular robotic organisms that consist of several joined autonomous robotic units. Finally, we plan to achieve such aggregation patterns and to control complex-shaped robotic organisms using AHHS controllers, as they are described here.</dcterms:abstract>
    <dc:contributor>Schmickl, Thomas</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Modelling a hormone-inspired controller for individual- and multi-modular robotic systems</dcterms:title>
    <dc:creator>Schmickl, Thomas</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T12:17:33Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen