Publikation:

Monocrystalline silicon : future cell concepts

Lade...
Vorschaubild

Dateien

Raabe_opus-122202.pdf
Raabe_opus-122202.pdfGröße: 288.4 KBDownloads: 184

Datum

2007

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

The compiled state-of-the-art of PV solar technology and deployment : 22nd European Photovoltaic Solar Energy Conference, EU PVSEC ; proceedings of the international conference, held in Milan, Italy, 3 - 7 September 2007. Munich: WIP-Renewable Energies, 2007, pp. 1024-1029

Zusammenfassung

An overview of currently used cell processes for monocrystalline silicon in industry is given. Since the screen printed solar cell process has the biggest market share, advanced screen printing processes are presented. The front-side with selective emitter structures are investigated by measuring the emitter saturation current (j0e) on symmetrical test samples with QSSPC. The reference sample with an industrial homogeneous 50 Ω/□ emitter and fired PECVD SiN has a j0e of 220 fA/cm2. On selective emitter structures with two diffusion steps, using first a 100 Ω/□ diffusion then a SiN layer as mask and finally a 10 Ω/□ diffusion, j0e is 140 fA/cm2 using PECVD SiN and 120 fA/cm2 respectively with LPCVD SiN. By changing the sequence of light and heavy diffusion and applying PECVD SiN for surface passivation, j0e was measured to 90 fA/cm2. Solar cells were made with a two step selective emitter and a simplified process with a single diffusion step using laser structured SiN as diffusion suppressing layer and no texture was applied to these cells. The best reference cell with homogeneous 50 Ω/□ emitter has an efficiency of 16.2% and 625 mV VOC. The best selective emitter solar cells with both used processes have a 10 mV increase of VOC leading to 635 mV and an efficiency of 17.0% of a cell using the simplified selective emitter process. The bulk lifetime of Cz-Si was monitored during a selective emitter process with a screen printed aluminium BSF on the rear. The bulk lifetime of the as grown wafer was 32 μs and was subsequently improved by phosphorous gettering to 67 μs. Bulk lifetime was further raised to 120 μs through aluminum gettering of the screen printed BSF. This result has to be taken into account when applying alternative rear sides with dielectric passivation where beneficial aluminium gettering cannot be used. Therefore material that does not strongly depend on aluminum gettering should be used. A dielectric rear side passivation can be integrated at several stages in the production process. Each sequence entails different challenges especially in maintaining the rear side passivation quality at the end of the process.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

selective emitter, czochralski, gettering

Konferenz

EU PVSEC, 3. Sept. 2007 - 7. Sept. 2007, Milan, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RAABE, Bernd, Helge HAVERKAMP, Felix BOOK, Amir DASTGHEIB-SHIRAZI, Robert MOLL, Giso HAHN, 2007. Monocrystalline silicon : future cell concepts. EU PVSEC. Milan, Italy, 3. Sept. 2007 - 7. Sept. 2007. In: The compiled state-of-the-art of PV solar technology and deployment : 22nd European Photovoltaic Solar Energy Conference, EU PVSEC ; proceedings of the international conference, held in Milan, Italy, 3 - 7 September 2007. Munich: WIP-Renewable Energies, 2007, pp. 1024-1029
BibTex
@inproceedings{Raabe2007Monoc-884,
  year={2007},
  title={Monocrystalline silicon : future cell concepts},
  publisher={WIP-Renewable Energies},
  address={Munich},
  booktitle={The compiled state-of-the-art of PV solar technology and deployment : 22nd European Photovoltaic Solar Energy Conference, EU PVSEC ; proceedings of the international conference, held in Milan, Italy, 3 - 7 September 2007},
  pages={1024--1029},
  author={Raabe, Bernd and Haverkamp, Helge and Book, Felix and Dastgheib-Shirazi, Amir and Moll, Robert and Hahn, Giso}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/884">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:51:43Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/884"/>
    <dc:creator>Moll, Robert</dc:creator>
    <dc:creator>Raabe, Bernd</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:51:43Z</dc:date>
    <dcterms:bibliographicCitation>Publ. in: The compiled state-of-the-art of PV solar technology and deployment : 22nd European Photovoltaic Solar Energy Conference, EU PVSEC ; proceedings of the international conference, held in Milan, Italy, 3 - 7 September 2007. - Munich : WIP-Renewable Energies, 2007, pp. 1024-1029</dcterms:bibliographicCitation>
    <dc:contributor>Haverkamp, Helge</dc:contributor>
    <dc:contributor>Raabe, Bernd</dc:contributor>
    <dc:contributor>Moll, Robert</dc:contributor>
    <dcterms:issued>2007</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Haverkamp, Helge</dc:creator>
    <dc:creator>Dastgheib-Shirazi, Amir</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/884/1/Raabe_opus-122202.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Book, Felix</dc:creator>
    <dcterms:title>Monocrystalline silicon : future cell concepts</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/884/1/Raabe_opus-122202.pdf"/>
    <dcterms:abstract xml:lang="eng">An overview of currently used cell processes for monocrystalline silicon in industry is given. Since the screen printed solar cell process has the biggest market share, advanced screen printing processes are presented. The front-side with selective emitter structures are investigated by measuring the emitter saturation current (j0e) on symmetrical test samples with QSSPC. The reference sample with an industrial homogeneous 50 Ω/□ emitter and fired PECVD SiN has a j0e of 220 fA/cm2. On selective emitter structures with two diffusion steps, using first a 100 Ω/□ diffusion then a SiN layer as mask and finally a 10 Ω/□ diffusion, j0e is 140 fA/cm2 using PECVD SiN and 120 fA/cm2 respectively with LPCVD SiN. By changing the sequence of light and heavy diffusion and applying PECVD SiN for surface passivation, j0e was measured to 90 fA/cm2. Solar cells were made with a two step selective emitter and a simplified process with a single diffusion step using laser structured SiN as diffusion suppressing layer and no texture was applied to these cells. The best reference cell with homogeneous 50 Ω/□ emitter has an efficiency of 16.2% and 625 mV VOC. The best selective emitter solar cells with both used processes have a 10 mV increase of VOC leading to 635 mV and an efficiency of 17.0% of a cell using the simplified selective emitter process. The bulk lifetime of Cz-Si was monitored during a selective emitter process with a screen printed aluminium BSF on the rear. The bulk lifetime of the as grown wafer was 32 μs and was subsequently improved by phosphorous gettering to 67 μs. Bulk lifetime was further raised to 120 μs through aluminum gettering of the screen printed BSF. This result has to be taken into account when applying alternative rear sides with dielectric passivation where beneficial aluminium gettering cannot be used. Therefore material that does not strongly depend on aluminum gettering should be used. A dielectric rear side passivation can be integrated at several stages in the production process. Each sequence entails different challenges especially in maintaining the rear side passivation quality at the end of the process.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dc:creator>Hahn, Giso</dc:creator>
    <dc:contributor>Dastgheib-Shirazi, Amir</dc:contributor>
    <dc:contributor>Book, Felix</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen