Publikation: Efficient Mining of Volunteered Trajectory Datasets
Lade...
Dateien
Datum
2024
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
BURGHARDT, Dirk, ed., Elena DEMIDOVA, ed., Daniel A. KEIM, ed.. Volunteered Geographic Information : Interpretation, Visualization and Social Context. Cham: Springer Nature, 2024, pp. 43-77. ISBN 978-3-031-35373-4. Available under: doi: 10.1007/978-3-031-35374-1_3
Zusammenfassung
With the ubiquity of mobile devices that are capable of tracking positions (be it via GPS or Wi-Fi/mobile network localization), there is a continuous stream of location data being generated every second. These location measurements are typically not considered individually but rather as sequences, each of which reflects the movement of one person or vehicle, which we call trajectory. This chapter presents new algorithmic approaches to process and visualize trajectories both in the network-constrained and the unconstrained case.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FORSCH, Axel, Stefan FUNKE, Jan-Henrik HAUNERT, Sabine STORANDT, 2024. Efficient Mining of Volunteered Trajectory Datasets. In: BURGHARDT, Dirk, ed., Elena DEMIDOVA, ed., Daniel A. KEIM, ed.. Volunteered Geographic Information : Interpretation, Visualization and Social Context. Cham: Springer Nature, 2024, pp. 43-77. ISBN 978-3-031-35373-4. Available under: doi: 10.1007/978-3-031-35374-1_3BibTex
@incollection{Forsch2024Effic-68939, year={2024}, doi={10.1007/978-3-031-35374-1_3}, title={Efficient Mining of Volunteered Trajectory Datasets}, isbn={978-3-031-35373-4}, publisher={Springer Nature}, address={Cham}, booktitle={Volunteered Geographic Information : Interpretation, Visualization and Social Context}, pages={43--77}, editor={Burghardt, Dirk and Demidova, Elena and Keim, Daniel A.}, author={Forsch, Axel and Funke, Stefan and Haunert, Jan-Henrik and Storandt, Sabine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68939"> <dcterms:abstract>With the ubiquity of mobile devices that are capable of tracking positions (be it via GPS or Wi-Fi/mobile network localization), there is a continuous stream of location data being generated every second. These location measurements are typically not considered individually but rather as sequences, each of which reflects the movement of one person or vehicle, which we call trajectory. This chapter presents new algorithmic approaches to process and visualize trajectories both in the network-constrained and the unconstrained case.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68939/1/Forsch_2-12j9jr6yqvjps0.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T08:26:53Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:title>Efficient Mining of Volunteered Trajectory Datasets</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T08:26:53Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68939/1/Forsch_2-12j9jr6yqvjps0.pdf"/> <dc:creator>Forsch, Axel</dc:creator> <dcterms:issued>2024</dcterms:issued> <dc:creator>Haunert, Jan-Henrik</dc:creator> <dc:contributor>Haunert, Jan-Henrik</dc:contributor> <dc:contributor>Storandt, Sabine</dc:contributor> <dc:contributor>Forsch, Axel</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Funke, Stefan</dc:creator> <dc:contributor>Funke, Stefan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68939"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Storandt, Sabine</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja