Publikation:

Efficient Mining of Volunteered Trajectory Datasets

Lade...
Vorschaubild

Dateien

Forsch_2-12j9jr6yqvjps0.pdf
Forsch_2-12j9jr6yqvjps0.pdfGröße: 1.57 MBDownloads: 27

Datum

2024

Autor:innen

Forsch, Axel
Funke, Stefan
Haunert, Jan-Henrik

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

BURGHARDT, Dirk, ed., Elena DEMIDOVA, ed., Daniel A. KEIM, ed.. Volunteered Geographic Information : Interpretation, Visualization and Social Context. Cham: Springer Nature, 2024, pp. 43-77. ISBN 978-3-031-35373-4. Available under: doi: 10.1007/978-3-031-35374-1_3

Zusammenfassung

With the ubiquity of mobile devices that are capable of tracking positions (be it via GPS or Wi-Fi/mobile network localization), there is a continuous stream of location data being generated every second. These location measurements are typically not considered individually but rather as sequences, each of which reflects the movement of one person or vehicle, which we call trajectory. This chapter presents new algorithmic approaches to process and visualize trajectories both in the network-constrained and the unconstrained case.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FORSCH, Axel, Stefan FUNKE, Jan-Henrik HAUNERT, Sabine STORANDT, 2024. Efficient Mining of Volunteered Trajectory Datasets. In: BURGHARDT, Dirk, ed., Elena DEMIDOVA, ed., Daniel A. KEIM, ed.. Volunteered Geographic Information : Interpretation, Visualization and Social Context. Cham: Springer Nature, 2024, pp. 43-77. ISBN 978-3-031-35373-4. Available under: doi: 10.1007/978-3-031-35374-1_3
BibTex
@incollection{Forsch2024Effic-68939,
  year={2024},
  doi={10.1007/978-3-031-35374-1_3},
  title={Efficient Mining of Volunteered Trajectory Datasets},
  isbn={978-3-031-35373-4},
  publisher={Springer Nature},
  address={Cham},
  booktitle={Volunteered Geographic Information : Interpretation, Visualization and Social Context},
  pages={43--77},
  editor={Burghardt, Dirk and Demidova, Elena and Keim, Daniel A.},
  author={Forsch, Axel and Funke, Stefan and Haunert, Jan-Henrik and Storandt, Sabine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68939">
    <dcterms:abstract>With the ubiquity of mobile devices that are capable of tracking positions (be it via GPS or Wi-Fi/mobile network localization), there is a continuous stream of location data being generated every second. These location measurements are typically not considered individually but rather as sequences, each of which reflects the movement of one person or vehicle, which we call trajectory. This chapter presents new algorithmic approaches to process and visualize trajectories both in the network-constrained and the unconstrained case.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68939/1/Forsch_2-12j9jr6yqvjps0.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T08:26:53Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>Efficient Mining of Volunteered Trajectory Datasets</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T08:26:53Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68939/1/Forsch_2-12j9jr6yqvjps0.pdf"/>
    <dc:creator>Forsch, Axel</dc:creator>
    <dcterms:issued>2024</dcterms:issued>
    <dc:creator>Haunert, Jan-Henrik</dc:creator>
    <dc:contributor>Haunert, Jan-Henrik</dc:contributor>
    <dc:contributor>Storandt, Sabine</dc:contributor>
    <dc:contributor>Forsch, Axel</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Funke, Stefan</dc:creator>
    <dc:contributor>Funke, Stefan</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68939"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Storandt, Sabine</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen