Publikation: MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Segmenting biologging time series of animals on multiple temporal scales is an essential step that requires complex techniques with careful parameterization and possibly cross-domain expertise. Yet, there is a lack of visual-interactive tools that strongly support such multi-scale segmentation. To close this gap, we present our MultiSegVA platform for interactively defining segmentation techniques and parameters on multiple temporal scales. MultiSegVA primarily contributes tailored, visual-interactive means and visual analytics paradigms for segmenting unlabeled time series on multiple scales. Further, to flexibly compose the multi-scale segmentation, the platform contributes a new visual query language that links a variety of segmentation techniques. To illustrate our approach, we present a domain-oriented set of segmentation techniques derived in collaboration with movement ecologists. We demonstrate the applicability and usefulness of MultiSegVA in two real-world use cases from movement ecology, related to behavior analysis after environment-aware segmentation, and after progressive clustering. Expert feedback from movement ecologists shows the effectiveness of tailored visual-interactive means and visual analytics paradigms at segmenting multi-scale data, enabling them to perform semantically meaningful analyses. A third use case demonstrates that MultiSegVA is generalizable to other domains.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MESCHENMOSER, Philipp, Juri F. BUCHMÜLLER, Daniel SEEBACHER, Martin WIKELSKI, Daniel A. KEIM, 2021. MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2021, 27(2), pp. 1623-1633. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030386BibTex
@article{Meschenmoser2021-02Multi-53434, year={2021}, doi={10.1109/TVCG.2020.3030386}, title={MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales}, number={2}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={1623--1633}, author={Meschenmoser, Philipp and Buchmüller, Juri F. and Seebacher, Daniel and Wikelski, Martin and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53434"> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T08:10:36Z</dc:date> <dc:creator>Meschenmoser, Philipp</dc:creator> <dc:contributor>Meschenmoser, Philipp</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Segmenting biologging time series of animals on multiple temporal scales is an essential step that requires complex techniques with careful parameterization and possibly cross-domain expertise. Yet, there is a lack of visual-interactive tools that strongly support such multi-scale segmentation. To close this gap, we present our MultiSegVA platform for interactively defining segmentation techniques and parameters on multiple temporal scales. MultiSegVA primarily contributes tailored, visual-interactive means and visual analytics paradigms for segmenting unlabeled time series on multiple scales. Further, to flexibly compose the multi-scale segmentation, the platform contributes a new visual query language that links a variety of segmentation techniques. To illustrate our approach, we present a domain-oriented set of segmentation techniques derived in collaboration with movement ecologists. We demonstrate the applicability and usefulness of MultiSegVA in two real-world use cases from movement ecology, related to behavior analysis after environment-aware segmentation, and after progressive clustering. Expert feedback from movement ecologists shows the effectiveness of tailored visual-interactive means and visual analytics paradigms at segmenting multi-scale data, enabling them to perform semantically meaningful analyses. A third use case demonstrates that MultiSegVA is generalizable to other domains.</dcterms:abstract> <dc:contributor>Seebacher, Daniel</dc:contributor> <dcterms:issued>2021-02</dcterms:issued> <dc:creator>Wikelski, Martin</dc:creator> <dc:contributor>Buchmüller, Juri F.</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T08:10:36Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53434/1/Meschenmoser_2-12qqwamllwjum8.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53434"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53434/1/Meschenmoser_2-12qqwamllwjum8.pdf"/> <dc:creator>Buchmüller, Juri F.</dc:creator> <dc:language>eng</dc:language> <dcterms:title>MultiSegVA : Using Visual Analytics to Segment Biologging Time Series on Multiple Scales</dcterms:title> <dc:contributor>Wikelski, Martin</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Seebacher, Daniel</dc:creator> </rdf:Description> </rdf:RDF>