Publikation: Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2013
Autor:innen
Scheuer, Julian
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
We prove a rigidity result in the sphere which allows us to generalize a result about smooth convex hypersurfaces in the sphere by Do Carmo-Warner to convex C2-hypersurfaces. We apply these results to prove C{1,\beta}-convergence of inverse F-curvature flows in the sphere to an equator in Sn+1 for embedded, closed, orientable, strictly convex initial hypersurfaces. The result holds for large classes of curvature functions including the mean curvature and arbitrary powers of the Gauss curvature. We use this result to prove Alexandrov-Fenchel type inequalities and solve isoperimetric type problems in the sphere.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MAKOWSKI, Matthias, Julian SCHEUER, 2013. Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphereBibTex
@unpublished{Makowski2013Rigid-26401, year={2013}, title={Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere}, author={Makowski, Matthias and Scheuer, Julian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26401"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Makowski, Matthias</dc:creator> <dc:contributor>Scheuer, Julian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:00:30Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Scheuer, Julian</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26401"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2013</dcterms:issued> <dcterms:abstract xml:lang="eng">We prove a rigidity result in the sphere which allows us to generalize a result about smooth convex hypersurfaces in the sphere by Do Carmo-Warner to convex C2-hypersurfaces. We apply these results to prove C{1,\beta}-convergence of inverse F-curvature flows in the sphere to an equator in Sn+1 for embedded, closed, orientable, strictly convex initial hypersurfaces. The result holds for large classes of curvature functions including the mean curvature and arbitrary powers of the Gauss curvature. We use this result to prove Alexandrov-Fenchel type inequalities and solve isoperimetric type problems in the sphere.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Makowski, Matthias</dc:contributor> <dcterms:title>Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:00:30Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja