Publikation: Projective simulation with generalization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The ability to generalize is an important feature of any intelligent agent. Not only because it may allow the agent to cope with large amounts of data, but also because in some environments, an agent with no generalization capabilities cannot learn. In this work we outline several criteria for generalization, and present a dynamic and autonomous machinery that enables projective simulation agents to meaningfully generalize. Projective simulation, a novel, physical approach to artificial intelligence, was recently shown to perform well in standard reinforcement learning problems, with applications in advanced robotics as well as quantum experiments. Both the basic projective simulation model and the presented generalization machinery are based on very simple principles. This allows us to provide a full analytical analysis of the agent's performance and to illustrate the benefit the agent gains by generalizing. Specifically, we show that already in basic (but extreme) environments, learning without generalization may be impossible, and demonstrate how the presented generalization machinery enables the projective simulation agent to learn.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MELNIKOV, Alexey A, Adi MAKMAL, Vedran DUNJKO, Hans J. BRIEGEL, 2017. Projective simulation with generalization. In: Scientific reports. 2017, 7(1), 14430. eISSN 2045-2322. Available under: doi: 10.1038/s41598-017-14740-yBibTex
@article{Melnikov2017Proje-40977, year={2017}, doi={10.1038/s41598-017-14740-y}, title={Projective simulation with generalization}, number={1}, volume={7}, journal={Scientific reports}, author={Melnikov, Alexey A and Makmal, Adi and Dunjko, Vedran and Briegel, Hans J.}, note={Article Number: 14430} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40977"> <dc:creator>Briegel, Hans J.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40977/1/Melnikov_2-12vype5f9hshs2.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40977"/> <dc:contributor>Makmal, Adi</dc:contributor> <dcterms:abstract xml:lang="eng">The ability to generalize is an important feature of any intelligent agent. Not only because it may allow the agent to cope with large amounts of data, but also because in some environments, an agent with no generalization capabilities cannot learn. In this work we outline several criteria for generalization, and present a dynamic and autonomous machinery that enables projective simulation agents to meaningfully generalize. Projective simulation, a novel, physical approach to artificial intelligence, was recently shown to perform well in standard reinforcement learning problems, with applications in advanced robotics as well as quantum experiments. Both the basic projective simulation model and the presented generalization machinery are based on very simple principles. This allows us to provide a full analytical analysis of the agent's performance and to illustrate the benefit the agent gains by generalizing. Specifically, we show that already in basic (but extreme) environments, learning without generalization may be impossible, and demonstrate how the presented generalization machinery enables the projective simulation agent to learn.</dcterms:abstract> <dcterms:title>Projective simulation with generalization</dcterms:title> <dc:contributor>Dunjko, Vedran</dc:contributor> <dc:contributor>Melnikov, Alexey A</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:creator>Dunjko, Vedran</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Melnikov, Alexey A</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Makmal, Adi</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40977/1/Melnikov_2-12vype5f9hshs2.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-20T09:15:35Z</dc:date> <dcterms:issued>2017</dcterms:issued> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Briegel, Hans J.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-20T09:15:35Z</dcterms:available> </rdf:Description> </rdf:RDF>