Publikation:

Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Hong, Chi Lap
Duerr, Oliver

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

XUE, Bing, ed., Mykola PECHENIZKIY, ed., Yun SING KOH, ed.. 21th IEEE International Conference on Data Mining workshops : 7-10 December 2021, virtual conference : proceedings. Los Alamitos, et al.: IEEE, 2021, pp. 398-404. ISBN 978-1-66542-427-1. Available under: doi: 10.1109/ICDMW53433.2021.00055

Zusammenfassung

Nowadays, the inexpensive memory space promotes an accelerating growth of stored image data. To exploit the data using supervised Machine or Deep Learning, it needs to be labeled. Manually labeling the vast amount of data is time-consuming and expensive, especially if human experts with specific domain knowledge are indispensable. Active learning addresses this shortcoming by querying the user the labels of the most informative images first. One way to obtain the ‘informativeness’ is by using uncertainty sampling as a query strategy, where the system queries those images it is most uncertain about how to classify. In this paper, we present a web-based active learning framework that helps to accelerate the labeling process. After manually labeling some images, the user gets recommendations of further candidates that could potentially be labeled equally (bulk image folder shift). We aim to explore the most efficient ‘uncertainty’ measure to improve the quality of the recommendations such that all images are sorted with a minimum number of user interactions (clicks). We conducted experiments using a manually labeled reference dataset to evaluate different combinations of classifiers and uncertainty measures. The results clearly show the effectiveness of an uncertainty sampling with bulk image shift recommendations (our novel method), which can reduce the number of required clicks to only around 20% compared to manual labeling.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2021 International Conference on Data Mining Workshops (ICDMW), 7. Dez. 2021 - 10. Dez. 2021, Virtual Conference
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHARPF, Philipp, Chi Lap HONG, Oliver DUERR, 2021. Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations. 2021 International Conference on Data Mining Workshops (ICDMW). Virtual Conference, 7. Dez. 2021 - 10. Dez. 2021. In: XUE, Bing, ed., Mykola PECHENIZKIY, ed., Yun SING KOH, ed.. 21th IEEE International Conference on Data Mining workshops : 7-10 December 2021, virtual conference : proceedings. Los Alamitos, et al.: IEEE, 2021, pp. 398-404. ISBN 978-1-66542-427-1. Available under: doi: 10.1109/ICDMW53433.2021.00055
BibTex
@inproceedings{Scharpf2021Accel-57373,
  year={2021},
  doi={10.1109/ICDMW53433.2021.00055},
  title={Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations},
  isbn={978-1-66542-427-1},
  publisher={IEEE},
  address={Los Alamitos, et al.},
  booktitle={21th IEEE International Conference on Data Mining workshops : 7-10 December 2021, virtual conference : proceedings},
  pages={398--404},
  editor={Xue, Bing and Pechenizkiy, Mykola and Sing Koh, Yun},
  author={Scharpf, Philipp and Hong, Chi Lap and Duerr, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57373">
    <dc:creator>Duerr, Oliver</dc:creator>
    <dc:creator>Hong, Chi Lap</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57373"/>
    <dc:contributor>Scharpf, Philipp</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2021</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-29T08:19:27Z</dc:date>
    <dc:creator>Scharpf, Philipp</dc:creator>
    <dc:contributor>Hong, Chi Lap</dc:contributor>
    <dcterms:title>Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-29T08:19:27Z</dcterms:available>
    <dc:contributor>Duerr, Oliver</dc:contributor>
    <dcterms:abstract xml:lang="eng">Nowadays, the inexpensive memory space promotes an accelerating growth of stored image data. To exploit the data using supervised Machine or Deep Learning, it needs to be labeled. Manually labeling the vast amount of data is time-consuming and expensive, especially if human experts with specific domain knowledge are indispensable. Active learning addresses this shortcoming by querying the user the labels of the most informative images first. One way to obtain the ‘informativeness’ is by using uncertainty sampling as a query strategy, where the system queries those images it is most uncertain about how to classify. In this paper, we present a web-based active learning framework that helps to accelerate the labeling process. After manually labeling some images, the user gets recommendations of further candidates that could potentially be labeled equally (bulk image folder shift). We aim to explore the most efficient ‘uncertainty’ measure to improve the quality of the recommendations such that all images are sorted with a minimum number of user interactions (clicks). We conducted experiments using a manually labeled reference dataset to evaluate different combinations of classifiers and uncertainty measures. The results clearly show the effectiveness of an uncertainty sampling with bulk image shift recommendations (our novel method), which can reduce the number of required clicks to only around 20% compared to manual labeling.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen