Publikation:

Mixture distribution latent state-trait analysis : Basic ideas and applications

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2007

Autor:innen

Courvoisier, Delphine S.
Eid, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Psychological Methods. 2007, 12(1), pp. 80-104. ISSN 1082-989X. eISSN 1939-1463. Available under: doi: 10.1037/1082-989X.12.1.80

Zusammenfassung

Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N=501) revealed that a model with 2 latent classes fits the data well. The larger class (76%) consists of individuals whose mood is highly variable, whose general well-being is comparatively lower, and whose mood variability is influenced by daily hassles and uplifts. The smaller class (24%) represents individuals who are rather stable and happier and whose mood is influenced only by daily uplifts but not by daily hassles. A simulation study on the model without covariates with 5 sets of sample sizes and 5 sets of number of occasions revealed that the appropriateness of the parameter estimates of this model depends on number of observations (the higher the better) and number of occasions (the higher the better). Another simulation study estimated Type I and II errors of the Lo-Mendell-Rubin test.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690COURVOISIER, Delphine S., Michael EID, Fridtjof W. NUSSBECK, 2007. Mixture distribution latent state-trait analysis : Basic ideas and applications. In: Psychological Methods. 2007, 12(1), pp. 80-104. ISSN 1082-989X. eISSN 1939-1463. Available under: doi: 10.1037/1082-989X.12.1.80
BibTex
@article{Courvoisier2007-03Mixtu-43768,
  year={2007},
  doi={10.1037/1082-989X.12.1.80},
  title={Mixture distribution latent state-trait analysis : Basic ideas and applications},
  number={1},
  volume={12},
  issn={1082-989X},
  journal={Psychological Methods},
  pages={80--104},
  author={Courvoisier, Delphine S. and Eid, Michael and Nussbeck, Fridtjof W.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43768">
    <dc:contributor>Eid, Michael</dc:contributor>
    <dc:contributor>Nussbeck, Fridtjof W.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-12T12:58:17Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43768"/>
    <dc:language>eng</dc:language>
    <dc:creator>Courvoisier, Delphine S.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-12T12:58:17Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2007-03</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Eid, Michael</dc:creator>
    <dcterms:abstract xml:lang="eng">Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N=501) revealed that a model with 2 latent classes fits the data well. The larger class (76%) consists of individuals whose mood is highly variable, whose general well-being is comparatively lower, and whose mood variability is influenced by daily hassles and uplifts. The smaller class (24%) represents individuals who are rather stable and happier and whose mood is influenced only by daily uplifts but not by daily hassles. A simulation study on the model without covariates with 5 sets of sample sizes and 5 sets of number of occasions revealed that the appropriateness of the parameter estimates of this model depends on number of observations (the higher the better) and number of occasions (the higher the better). Another simulation study estimated Type I and II errors of the Lo-Mendell-Rubin test.</dcterms:abstract>
    <dc:contributor>Courvoisier, Delphine S.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Nussbeck, Fridtjof W.</dc:creator>
    <dcterms:title>Mixture distribution latent state-trait analysis : Basic ideas and applications</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen