Publikation: Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In an era of pervasive anthropogenic ecological disturbances, there is a pressing need to understand the factors that constitute community response and resilience. A detailed understanding of disturbance response needs to go beyond associations and incorporate features of disturbances, species traits, rapid evolution and dispersal. Multispecies microbial communities that experience antibiotic perturbation represent a key system with important medical dimensions. However, previous microbiome studies on this theme have relied on high-throughput sequencing data from uncultured species without the ability to explicitly account for the role of species traits and immigration. Here, we serially passage a 34-species defined bacterial community through different levels of pulse antibiotic disturbance, manipulating the presence or absence of species immigration. To understand the ecological community response measured using amplicon sequencing, we combine initial trait data measured for each species separately and metagenome sequencing data revealing adaptive mutations during the experiment. We found that the ecological community response was highly repeatable within the experimental treatments, which could be attributed in part to key species traits (antibiotic susceptibility and growth rate). Increasing antibiotic levels were also coupled with an increasing probability of species extinction, making species immigration critical for community resilience. Moreover, we detected signals of antibiotic-resistance evolution occurring within species at the same time scale, leaving evolutionary changes in communities despite recovery at the species compositional level. Together, these observations reveal a disturbance response that presents as classic species sorting, but is nevertheless accompanied by rapid within-species evolution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CAIRNS, Johannes, Roosa JOKELA, Lutz BECKS, Ville MUSTONEN, Teppo HILTUNEN, 2020. Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation. In: Nature Ecology & Evolution. Springer Nature. 2020, 4(10), pp. 1385-1394. eISSN 2397-334X. Available under: doi: 10.1038/s41559-020-1272-9BibTex
@article{Cairns2020-10Repea-50599, year={2020}, doi={10.1038/s41559-020-1272-9}, title={Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation}, number={10}, volume={4}, journal={Nature Ecology & Evolution}, pages={1385--1394}, author={Cairns, Johannes and Jokela, Roosa and Becks, Lutz and Mustonen, Ville and Hiltunen, Teppo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50599"> <dc:contributor>Cairns, Johannes</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50599/1/Cairns_2-12yz7q35h1l8k5.pdf"/> <dc:creator>Hiltunen, Teppo</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-27T14:18:34Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50599"/> <dc:contributor>Jokela, Roosa</dc:contributor> <dcterms:title>Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation</dcterms:title> <dc:contributor>Mustonen, Ville</dc:contributor> <dcterms:issued>2020-10</dcterms:issued> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Becks, Lutz</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-27T14:18:34Z</dc:date> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50599/1/Cairns_2-12yz7q35h1l8k5.pdf"/> <dc:contributor>Hiltunen, Teppo</dc:contributor> <dc:creator>Mustonen, Ville</dc:creator> <dc:creator>Cairns, Johannes</dc:creator> <dcterms:abstract xml:lang="eng">In an era of pervasive anthropogenic ecological disturbances, there is a pressing need to understand the factors that constitute community response and resilience. A detailed understanding of disturbance response needs to go beyond associations and incorporate features of disturbances, species traits, rapid evolution and dispersal. Multispecies microbial communities that experience antibiotic perturbation represent a key system with important medical dimensions. However, previous microbiome studies on this theme have relied on high-throughput sequencing data from uncultured species without the ability to explicitly account for the role of species traits and immigration. Here, we serially passage a 34-species defined bacterial community through different levels of pulse antibiotic disturbance, manipulating the presence or absence of species immigration. To understand the ecological community response measured using amplicon sequencing, we combine initial trait data measured for each species separately and metagenome sequencing data revealing adaptive mutations during the experiment. We found that the ecological community response was highly repeatable within the experimental treatments, which could be attributed in part to key species traits (antibiotic susceptibility and growth rate). Increasing antibiotic levels were also coupled with an increasing probability of species extinction, making species immigration critical for community resilience. Moreover, we detected signals of antibiotic-resistance evolution occurring within species at the same time scale, leaving evolutionary changes in communities despite recovery at the species compositional level. Together, these observations reveal a disturbance response that presents as classic species sorting, but is nevertheless accompanied by rapid within-species evolution.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Jokela, Roosa</dc:creator> <dc:contributor>Becks, Lutz</dc:contributor> </rdf:Description> </rdf:RDF>