Publikation:

Memory and forecasting capacities of nonlinear recurrent networks

Lade...
Vorschaubild

Dateien

Gonon_2-1341f261k0x0z6.pdf
Gonon_2-1341f261k0x0z6.pdfGröße: 736.62 KBDownloads: 128

Datum

2020

Autor:innen

Gonon, Lukas
Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physica D: Nonlinear Phenomena. Elsevier. 2020, 414, 132721. ISSN 0167-2789. eISSN 1872-8022. Available under: doi: 10.1016/j.physd.2020.132721

Zusammenfassung

The notion of memory capacity, originally introduced for echo state and linear networks with independent inputs, is generalized to nonlinear recurrent networks with stationary but dependent inputs. The presence of dependence in the inputs makes natural the introduction of the network forecasting capacity, that measures the possibility of forecasting time series values using network states. Generic bounds for memory and forecasting capacities are formulated in terms of the number of neurons of the nonlinear recurrent network and the autocovariance function or the spectral density of the input. These bounds generalize well-known estimates in the literature to a dependent inputs setup. Finally, for the particular case of linear recurrent networks with independent inputs it is proved that the memory capacity is given by the rank of the associated controllability matrix, a fact that has been for a long time assumed to be true without proof by the community.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Memory capacity, Forecasting capacity, Recurrent neural network, Reservoir computing, Echo state network (ESN), Machine learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GONON, Lukas, Lyudmila GRIGORYEVA, Juan-Pablo ORTEGA, 2020. Memory and forecasting capacities of nonlinear recurrent networks. In: Physica D: Nonlinear Phenomena. Elsevier. 2020, 414, 132721. ISSN 0167-2789. eISSN 1872-8022. Available under: doi: 10.1016/j.physd.2020.132721
BibTex
@article{Gonon2020Memor-55524,
  year={2020},
  doi={10.1016/j.physd.2020.132721},
  title={Memory and forecasting capacities of nonlinear recurrent networks},
  volume={414},
  issn={0167-2789},
  journal={Physica D: Nonlinear Phenomena},
  author={Gonon, Lukas and Grigoryeva, Lyudmila and Ortega, Juan-Pablo},
  note={Article Number: 132721}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55524">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55524"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Gonon, Lukas</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55524/1/Gonon_2-1341f261k0x0z6.pdf"/>
    <dcterms:abstract xml:lang="eng">The notion of memory capacity, originally introduced for echo state and linear networks with independent inputs, is generalized to nonlinear recurrent networks with stationary but dependent inputs. The presence of dependence in the inputs makes natural the introduction of the network forecasting capacity, that measures the possibility of forecasting time series values using network states. Generic bounds for memory and forecasting capacities are formulated in terms of the number of neurons of the nonlinear recurrent network and the autocovariance function or the spectral density of the input. These bounds generalize well-known estimates in the literature to a dependent inputs setup. Finally, for the particular case of linear recurrent networks with independent inputs it is proved that the memory capacity is given by the rank of the associated controllability matrix, a fact that has been for a long time assumed to be true without proof by the community.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T10:15:08Z</dcterms:available>
    <dcterms:title>Memory and forecasting capacities of nonlinear recurrent networks</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:creator>Gonon, Lukas</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T10:15:08Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55524/1/Gonon_2-1341f261k0x0z6.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen