Publikation: Effective theory of monolayer TMDC double quantum dots
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Monolayer transition metal dichalcogenides (TMDCs) are promising candidates for quantum technologies, such as spin qubits in quantum dots, because they are truly two-dimensional semiconductors with a direct band gap. In this work, we analyse theoretically the behaviour of a double quantum dot (DQD) system created in the conduction band of these materials, with two electrons in the (1,1) charge configuration. Motivated by recent experimental progress, we consider several scenarios, including different spin–orbit splittings in the two dots and including the case when the valley degeneracy is lifted due to an insulating ferromagnetic substrate. Finally, we discuss in which cases it is possible to reduce the low energy subspace to the lowest Kramers pairs. We find that in this case the low energy model is formally identical to the Heisenberg exchange Hamiltonian, indicating that such Kramers pairs may serve as qubit implementations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DAVID, Alessandro, Guido BURKARD, Andor KORMÁNYOS, 2018. Effective theory of monolayer TMDC double quantum dots. In: 2D Materials. 2018, 5(3), 035031. eISSN 2053-1583. Available under: doi: 10.1088/2053-1583/aac17fBibTex
@article{David2018-07-01Effec-42716, year={2018}, doi={10.1088/2053-1583/aac17f}, title={Effective theory of monolayer TMDC double quantum dots}, number={3}, volume={5}, journal={2D Materials}, author={David, Alessandro and Burkard, Guido and Kormányos, Andor}, note={Article Number: 035031} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42716"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018-07-01</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <dc:rights>Attribution 3.0 Unported</dc:rights> <dc:contributor>Kormányos, Andor</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Kormányos, Andor</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42716"/> <dc:contributor>David, Alessandro</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42716/1/David_2-13bzwi6zqpeqs4.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42716/1/David_2-13bzwi6zqpeqs4.pdf"/> <dcterms:abstract xml:lang="eng">Monolayer transition metal dichalcogenides (TMDCs) are promising candidates for quantum technologies, such as spin qubits in quantum dots, because they are truly two-dimensional semiconductors with a direct band gap. In this work, we analyse theoretically the behaviour of a double quantum dot (DQD) system created in the conduction band of these materials, with two electrons in the (1,1) charge configuration. Motivated by recent experimental progress, we consider several scenarios, including different spin–orbit splittings in the two dots and including the case when the valley degeneracy is lifted due to an insulating ferromagnetic substrate. Finally, we discuss in which cases it is possible to reduce the low energy subspace to the lowest Kramers pairs. We find that in this case the low energy model is formally identical to the Heisenberg exchange Hamiltonian, indicating that such Kramers pairs may serve as qubit implementations.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-27T08:58:44Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-27T08:58:44Z</dc:date> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>David, Alessandro</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Effective theory of monolayer TMDC double quantum dots</dcterms:title> </rdf:Description> </rdf:RDF>