Strong solutions for a compressible fluid model of Korteweg type

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2008
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 2008, 25(4), pp. 679-696. ISSN 0294-1449. eISSN 1873-1430. Available under: doi: 10.1016/j.anihpc.2007.03.005
Zusammenfassung

We prove existence and uniqueness of local strong solutions for an isothermal model of capillary compressible fluids derived by J.E. Dunn and J. Serrin (1985). This nonlinear problem is approached by proving maximal regularity for a related linear problem in order to formulate a fixed point equation, which is solved by the contraction mapping principle. Localising the linear problem leads to model problems in full and half space, which are treated by Dore–Venni Theory, real interpolation and H-calculus. For these steps, it is decisive to find conditions on the inhomogeneities that are necessary and sufficient.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Korteweg model, Compressible fluids, Parabolic systems, Maximal regularity, H∞-calculus, Inhomogeneous boundary conditions
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KOTSCHOTE, Matthias, 2008. Strong solutions for a compressible fluid model of Korteweg type. In: Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 2008, 25(4), pp. 679-696. ISSN 0294-1449. eISSN 1873-1430. Available under: doi: 10.1016/j.anihpc.2007.03.005
BibTex
@article{Kotschote2008Stron-25498,
  year={2008},
  doi={10.1016/j.anihpc.2007.03.005},
  title={Strong solutions for a compressible fluid model of Korteweg type},
  number={4},
  volume={25},
  issn={0294-1449},
  journal={Annales de l'Institut Henri Poincare (C) Non Linear Analysis},
  pages={679--696},
  author={Kotschote, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25498">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25498"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:19:48Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Strong solutions for a compressible fluid model of Korteweg type</dcterms:title>
    <dcterms:bibliographicCitation>Annales de l'Institut Henri Poincaré (C): Non Linear Analysis ; 25 (2008), 4. - S. - 679-696</dcterms:bibliographicCitation>
    <dc:contributor>Kotschote, Matthias</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">We prove existence and uniqueness of local strong solutions for an isothermal model of capillary compressible fluids derived by J.E. Dunn and J. Serrin (1985). This nonlinear problem is approached by proving maximal regularity for a related linear problem in order to formulate a fixed point equation, which is solved by the contraction mapping principle. Localising the linear problem leads to model problems in full and half space, which are treated by Dore–Venni Theory, real interpolation and H&lt;sup&gt;∞&lt;/sup&gt;-calculus. For these steps, it is decisive to find conditions on the inhomogeneities that are necessary and sufficient.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:19:48Z</dcterms:available>
    <dc:creator>Kotschote, Matthias</dc:creator>
    <dcterms:issued>2008</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen