Publikation:

Strong solutions for a compressible fluid model of Korteweg type

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 2008, 25(4), pp. 679-696. ISSN 0294-1449. eISSN 1873-1430. Available under: doi: 10.1016/j.anihpc.2007.03.005

Zusammenfassung

We prove existence and uniqueness of local strong solutions for an isothermal model of capillary compressible fluids derived by J.E. Dunn and J. Serrin (1985). This nonlinear problem is approached by proving maximal regularity for a related linear problem in order to formulate a fixed point equation, which is solved by the contraction mapping principle. Localising the linear problem leads to model problems in full and half space, which are treated by Dore–Venni Theory, real interpolation and H-calculus. For these steps, it is decisive to find conditions on the inhomogeneities that are necessary and sufficient.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Korteweg model, Compressible fluids, Parabolic systems, Maximal regularity, H∞-calculus, Inhomogeneous boundary conditions

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOTSCHOTE, Matthias, 2008. Strong solutions for a compressible fluid model of Korteweg type. In: Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 2008, 25(4), pp. 679-696. ISSN 0294-1449. eISSN 1873-1430. Available under: doi: 10.1016/j.anihpc.2007.03.005
BibTex
@article{Kotschote2008Stron-25498,
  year={2008},
  doi={10.1016/j.anihpc.2007.03.005},
  title={Strong solutions for a compressible fluid model of Korteweg type},
  number={4},
  volume={25},
  issn={0294-1449},
  journal={Annales de l'Institut Henri Poincare (C) Non Linear Analysis},
  pages={679--696},
  author={Kotschote, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25498">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25498"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:19:48Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Strong solutions for a compressible fluid model of Korteweg type</dcterms:title>
    <dcterms:bibliographicCitation>Annales de l'Institut Henri Poincaré (C): Non Linear Analysis ; 25 (2008), 4. - S. - 679-696</dcterms:bibliographicCitation>
    <dc:contributor>Kotschote, Matthias</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">We prove existence and uniqueness of local strong solutions for an isothermal model of capillary compressible fluids derived by J.E. Dunn and J. Serrin (1985). This nonlinear problem is approached by proving maximal regularity for a related linear problem in order to formulate a fixed point equation, which is solved by the contraction mapping principle. Localising the linear problem leads to model problems in full and half space, which are treated by Dore–Venni Theory, real interpolation and H&lt;sup&gt;∞&lt;/sup&gt;-calculus. For these steps, it is decisive to find conditions on the inhomogeneities that are necessary and sufficient.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T08:19:48Z</dcterms:available>
    <dc:creator>Kotschote, Matthias</dc:creator>
    <dcterms:issued>2008</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen