Publikation:

Deriving Mesoscopic Models of Collective Behavior for Finite Populations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Morris, Richard G.
Guttal, Vishwesha

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

RAO, Arni S. R. Srinivasa, ed., Calyampudi Radhakrishna RAO, ed.. Integrated population biology and modeling : Part B. Amsterdam: Elsevier, 2019, pp. 551-594. Handbook of statistics. 40. ISBN 978-0-444-64152-6. Available under: doi: 10.1016/bs.host.2018.10.002

Zusammenfassung

Animal groups exhibit many emergent properties that are a consequence of local interactions. Linking individual-level behavior, which is often stochastic and local, to coarse-grained descriptions of animal groups has been a question of fundamental interest from both biological and mathematical perspectives. In this book chapter, we present two complementary approaches to derive coarse-grained descriptions of collective behavior at the so-called mesoscopic scales, which account for the stochasticity arising from the finite sizes of animal groups. We construct stochastic differential equations (SDEs) for a coarse-grained variable that describes the order/consensus within a group. The first method of construction is based on van Kampen's system-size expansion of transition rates. The second method employs Gillespie's chemical Langevin equations. We apply these two methods to two microscopic models from the literature, in which organisms stochastically interact and choose between two directions/choices of foraging. These “binary-choice” models differ only in the types of interactions between individuals, with one assuming simple pairwise interactions, and the other incorporating ternary effects. In both cases, the derived mesoscopic SDEs have multiplicative/state-dependent noise, i.e., the strength of the noise depends on the current state of the system. However, the different models demonstrate the contrasting effects of noise: increasing the order/consensus in the pairwise interaction model, while reducing the order/consensus in the higher-order interaction model. We verify the validity of such mesoscopic behavior by numerical simulations of the underlying microscopic models. Although both methods yield identical SDEs for binary-choice systems that are effectively one-dimensional, the relative tractability of the chemical Langevin approach is beneficial in generalizations to higher-dimensions. We hope that this book chapter provides a pedagogical review of two complementary methods to construct mesoscopic descriptions from microscopic rules, how the noise in mesoscopic models is often multiplicative/state-dependent, and finally, how such noise can have counter-intuitive effects on shaping collective behavior.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Demographic noise, Multiplicative noise, Nonlinear dynamics, Fokker–Planck equation, Langevin equation Noise-induced transitions, Ecology, Collective motion, Population dynamics, Collective decision-making

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JHAWAR, Jitesh, Richard G. MORRIS, Vishwesha GUTTAL, 2019. Deriving Mesoscopic Models of Collective Behavior for Finite Populations. In: RAO, Arni S. R. Srinivasa, ed., Calyampudi Radhakrishna RAO, ed.. Integrated population biology and modeling : Part B. Amsterdam: Elsevier, 2019, pp. 551-594. Handbook of statistics. 40. ISBN 978-0-444-64152-6. Available under: doi: 10.1016/bs.host.2018.10.002
BibTex
@incollection{Jhawar2019Deriv-55960,
  year={2019},
  doi={10.1016/bs.host.2018.10.002},
  title={Deriving Mesoscopic Models of Collective Behavior for Finite Populations},
  number={40},
  isbn={978-0-444-64152-6},
  publisher={Elsevier},
  address={Amsterdam},
  series={Handbook of statistics},
  booktitle={Integrated population biology and modeling : Part B},
  pages={551--594},
  editor={Rao, Arni S. R. Srinivasa and Rao, Calyampudi Radhakrishna},
  author={Jhawar, Jitesh and Morris, Richard G. and Guttal, Vishwesha}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55960">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Deriving Mesoscopic Models of Collective Behavior for Finite Populations</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T13:13:26Z</dc:date>
    <dc:creator>Morris, Richard G.</dc:creator>
    <dc:creator>Guttal, Vishwesha</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-21T13:13:26Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Jhawar, Jitesh</dc:creator>
    <dcterms:abstract xml:lang="eng">Animal groups exhibit many emergent properties that are a consequence of local interactions. Linking individual-level behavior, which is often stochastic and local, to coarse-grained descriptions of animal groups has been a question of fundamental interest from both biological and mathematical perspectives. In this book chapter, we present two complementary approaches to derive coarse-grained descriptions of collective behavior at the so-called mesoscopic scales, which account for the stochasticity arising from the finite sizes of animal groups. We construct stochastic differential equations (SDEs) for a coarse-grained variable that describes the order/consensus within a group. The first method of construction is based on van Kampen's system-size expansion of transition rates. The second method employs Gillespie's chemical Langevin equations. We apply these two methods to two microscopic models from the literature, in which organisms stochastically interact and choose between two directions/choices of foraging. These “binary-choice” models differ only in the types of interactions between individuals, with one assuming simple pairwise interactions, and the other incorporating ternary effects. In both cases, the derived mesoscopic SDEs have multiplicative/state-dependent noise, i.e., the strength of the noise depends on the current state of the system. However, the different models demonstrate the contrasting effects of noise: increasing the order/consensus in the pairwise interaction model, while reducing the order/consensus in the higher-order interaction model. We verify the validity of such mesoscopic behavior by numerical simulations of the underlying microscopic models. Although both methods yield identical SDEs for binary-choice systems that are effectively one-dimensional, the relative tractability of the chemical Langevin approach is beneficial in generalizations to higher-dimensions. We hope that this book chapter provides a pedagogical review of two complementary methods to construct mesoscopic descriptions from microscopic rules, how the noise in mesoscopic models is often multiplicative/state-dependent, and finally, how such noise can have counter-intuitive effects on shaping collective behavior.</dcterms:abstract>
    <dc:contributor>Guttal, Vishwesha</dc:contributor>
    <dc:contributor>Morris, Richard G.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2019</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Jhawar, Jitesh</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55960"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen