Publikation: A Symmetry-Based Kinematic Theory for Nanocrystal Morphology Design
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The growth of crystalline nanoparticles (NPs) generally involves three processes: nucleation, growth, and shape evolution. Among them, the shape evolution is less understood, despite the importance of morphology for NP properties. Here, we propose a symmetry-based kinematic theory (SBKT) based on classical growth theories to illustrate the process. Based on the crystal lattice, nucleus (or seed) symmetry, and the preferential growth directions under the experimental conditions, the SBKT can illustrate the growth trajectories. The theory accommodates the conventional criteria of the major existing theories for crystal growth and provides tools to better understand the symmetry-breaking process during the growth of anisotropic structures. Furthermore, complex dendritic growth is theoretically and experimentally demonstrated. Thus, it provides a framework to explain the shape evolution, and extends the morphogenesis prediction to cases, which cannot be treated by other theories.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NI, Bing, Guillermo GONZALEZ-RUBIO, Felizitas KIRNER, Siyuan ZHANG, Helmut CÖLFEN, 2022. A Symmetry-Based Kinematic Theory for Nanocrystal Morphology Design. In: Angewandte Chemie International Edition. Wiley. 2022, 61(20), e202200753. ISSN 1433-7851. eISSN 1521-3773. Available under: doi: 10.1002/anie.202200753BibTex
@article{Ni2022-05-09Symme-56961, year={2022}, doi={10.1002/anie.202200753}, title={A Symmetry-Based Kinematic Theory for Nanocrystal Morphology Design}, number={20}, volume={61}, issn={1433-7851}, journal={Angewandte Chemie International Edition}, author={Ni, Bing and Gonzalez-Rubio, Guillermo and Kirner, Felizitas and Zhang, Siyuan and Cölfen, Helmut}, note={H.C. and F.K. thank Deutsche Forschungsgemeinschaft (DFG) SFB 1214 project B1 for funding. Article Number: e202200753} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56961"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Kirner, Felizitas</dc:creator> <dcterms:abstract xml:lang="eng">The growth of crystalline nanoparticles (NPs) generally involves three processes: nucleation, growth, and shape evolution. Among them, the shape evolution is less understood, despite the importance of morphology for NP properties. Here, we propose a symmetry-based kinematic theory (SBKT) based on classical growth theories to illustrate the process. Based on the crystal lattice, nucleus (or seed) symmetry, and the preferential growth directions under the experimental conditions, the SBKT can illustrate the growth trajectories. The theory accommodates the conventional criteria of the major existing theories for crystal growth and provides tools to better understand the symmetry-breaking process during the growth of anisotropic structures. Furthermore, complex dendritic growth is theoretically and experimentally demonstrated. Thus, it provides a framework to explain the shape evolution, and extends the morphogenesis prediction to cases, which cannot be treated by other theories.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Cölfen, Helmut</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Gonzalez-Rubio, Guillermo</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56961"/> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-23T10:07:32Z</dc:date> <dc:creator>Zhang, Siyuan</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kirner, Felizitas</dc:contributor> <dc:contributor>Ni, Bing</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-23T10:07:32Z</dcterms:available> <dc:contributor>Cölfen, Helmut</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Zhang, Siyuan</dc:contributor> <dc:creator>Ni, Bing</dc:creator> <dcterms:title>A Symmetry-Based Kinematic Theory for Nanocrystal Morphology Design</dcterms:title> <dcterms:issued>2022-05-09</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56961/1/Ni_2-13jpox65mjqwi2.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56961/1/Ni_2-13jpox65mjqwi2.pdf"/> <dc:contributor>Gonzalez-Rubio, Guillermo</dc:contributor> </rdf:Description> </rdf:RDF>