Publikation:

Real Tropicalization and Analytification of Semialgebraic Sets

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Jell, Philipp
Yu, Josephine

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Mathematics Research Notices (IMRN). Oxford University Press (OUP). 2022, 2022(2), pp. 928-958. ISSN 1073-7928. eISSN 1687-0247. Available under: doi: 10.1093/imrn/rnaa112

Zusammenfassung

Let K be a real closed field with a nontrivial non-archimedean absolute value. We study a refined version of the tropicalization map, which we call real tropicalization map, that takes into account the signs on K⁠. We study images of semialgebraic subsets of Kn under this map from a general point of view. For a semialgebraic set S⊆Kn we define a space Sanr called the real analytification, which we show to be homeomorphic to the inverse limit of all real tropicalizations of S⁠. We prove a real analogue of the tropical fundamental theorem and show that the tropicalization of any semialgebraic set is described by tropicalization of finitely many inequalities, which are valid on the semialgebraic set. We also study the topological properties of real analytification and tropicalization. If X is an algebraic variety, we show that Xanr can be canonically embedded into the real spectrum Xr of X⁠, and we study its relation with the Berkovich analytification of X⁠.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JELL, Philipp, Claus SCHEIDERER, Josephine YU, 2022. Real Tropicalization and Analytification of Semialgebraic Sets. In: International Mathematics Research Notices (IMRN). Oxford University Press (OUP). 2022, 2022(2), pp. 928-958. ISSN 1073-7928. eISSN 1687-0247. Available under: doi: 10.1093/imrn/rnaa112
BibTex
@article{Jell2022Tropi-53167,
  year={2022},
  doi={10.1093/imrn/rnaa112},
  title={Real Tropicalization and Analytification of Semialgebraic Sets},
  number={2},
  volume={2022},
  issn={1073-7928},
  journal={International Mathematics Research Notices (IMRN)},
  pages={928--958},
  author={Jell, Philipp and Scheiderer, Claus and Yu, Josephine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53167">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53167"/>
    <dc:creator>Jell, Philipp</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-17T12:28:59Z</dcterms:available>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Yu, Josephine</dc:contributor>
    <dcterms:abstract xml:lang="eng">Let K be a real closed field with a nontrivial non-archimedean absolute value. We study a refined version of the tropicalization map, which we call real tropicalization map, that takes into account the signs on K⁠. We study images of semialgebraic subsets of K&lt;sup&gt;n&lt;/sup&gt; under this map from a general point of view. For a semialgebraic set S⊆K&lt;sup&gt;n&lt;/sup&gt; we define a space S&lt;sup&gt;an&lt;/sup&gt;&lt;sub&gt;r&lt;/sub&gt; called the real analytification, which we show to be homeomorphic to the inverse limit of all real tropicalizations of S⁠. We prove a real analogue of the tropical fundamental theorem and show that the tropicalization of any semialgebraic set is described by tropicalization of finitely many inequalities, which are valid on the semialgebraic set. We also study the topological properties of real analytification and tropicalization. If X is an algebraic variety, we show that X&lt;sup&gt;an&lt;/sup&gt;&lt;sub&gt;r&lt;/sub&gt; can be canonically embedded into the real spectrum Xr of X⁠, and we study its relation with the Berkovich analytification of X⁠.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Jell, Philipp</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-17T12:28:59Z</dc:date>
    <dc:creator>Yu, Josephine</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Real Tropicalization and Analytification of Semialgebraic Sets</dcterms:title>
    <dcterms:issued>2022</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Scheiderer, Claus</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen