Publikation: Real Tropicalization and Analytification of Semialgebraic Sets
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let K be a real closed field with a nontrivial non-archimedean absolute value. We study a refined version of the tropicalization map, which we call real tropicalization map, that takes into account the signs on K. We study images of semialgebraic subsets of Kn under this map from a general point of view. For a semialgebraic set S⊆Kn we define a space Sanr called the real analytification, which we show to be homeomorphic to the inverse limit of all real tropicalizations of S. We prove a real analogue of the tropical fundamental theorem and show that the tropicalization of any semialgebraic set is described by tropicalization of finitely many inequalities, which are valid on the semialgebraic set. We also study the topological properties of real analytification and tropicalization. If X is an algebraic variety, we show that Xanr can be canonically embedded into the real spectrum Xr of X, and we study its relation with the Berkovich analytification of X.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JELL, Philipp, Claus SCHEIDERER, Josephine YU, 2022. Real Tropicalization and Analytification of Semialgebraic Sets. In: International Mathematics Research Notices (IMRN). Oxford University Press (OUP). 2022, 2022(2), pp. 928-958. ISSN 1073-7928. eISSN 1687-0247. Available under: doi: 10.1093/imrn/rnaa112BibTex
@article{Jell2022Tropi-53167, year={2022}, doi={10.1093/imrn/rnaa112}, title={Real Tropicalization and Analytification of Semialgebraic Sets}, number={2}, volume={2022}, issn={1073-7928}, journal={International Mathematics Research Notices (IMRN)}, pages={928--958}, author={Jell, Philipp and Scheiderer, Claus and Yu, Josephine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53167"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53167"/> <dc:creator>Jell, Philipp</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-17T12:28:59Z</dcterms:available> <dc:contributor>Scheiderer, Claus</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Yu, Josephine</dc:contributor> <dcterms:abstract xml:lang="eng">Let K be a real closed field with a nontrivial non-archimedean absolute value. We study a refined version of the tropicalization map, which we call real tropicalization map, that takes into account the signs on K. We study images of semialgebraic subsets of K<sup>n</sup> under this map from a general point of view. For a semialgebraic set S⊆K<sup>n</sup> we define a space S<sup>an</sup><sub>r</sub> called the real analytification, which we show to be homeomorphic to the inverse limit of all real tropicalizations of S. We prove a real analogue of the tropical fundamental theorem and show that the tropicalization of any semialgebraic set is described by tropicalization of finitely many inequalities, which are valid on the semialgebraic set. We also study the topological properties of real analytification and tropicalization. If X is an algebraic variety, we show that X<sup>an</sup><sub>r</sub> can be canonically embedded into the real spectrum Xr of X, and we study its relation with the Berkovich analytification of X.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Jell, Philipp</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-17T12:28:59Z</dc:date> <dc:creator>Yu, Josephine</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Real Tropicalization and Analytification of Semialgebraic Sets</dcterms:title> <dcterms:issued>2022</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:creator>Scheiderer, Claus</dc:creator> </rdf:Description> </rdf:RDF>