Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation

Lade...
Vorschaubild
Dateien
Banholzer_2-13q9e8ietk8797.pdf
Banholzer_2-13q9e8ietk8797.pdfGröße: 1.02 MBDownloads: 202
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematics. MDPI AG. 2020, 8(5), 777. eISSN 2227-7390. Available under: doi: 10.3390/math8050777
Zusammenfassung

In the present paper a multiobjective optimal control problem governed by a linear parabolic advection-diffusion-reaction equation is considered. The optimal controls are computed by applying model predictive control (MPC), which is a method for controlling dynamical systems over long or infinite time horizons by successively computing optimal controls over a moving finite time horizon. Numerical experiments illustrate that the proposed solution approach can be successfully applied although some of the assumptions made in [1,2] can not be guaranteed for the studied tests.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
multiobjectice optimization; multiobjective optimal control; model predictive control; evolution problems; advection-diffusion equations
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BANHOLZER, Stefan, Giulia FABRINI, Lars GRÜNE, Stefan VOLKWEIN, 2020. Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation. In: Mathematics. MDPI AG. 2020, 8(5), 777. eISSN 2227-7390. Available under: doi: 10.3390/math8050777
BibTex
@article{Banholzer2020Multi-49272.2,
  year={2020},
  doi={10.3390/math8050777},
  title={Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation},
  number={5},
  volume={8},
  journal={Mathematics},
  author={Banholzer, Stefan and Fabrini, Giulia and Grüne, Lars and Volkwein, Stefan},
  note={Article Number: 777}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49272.2">
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Banholzer, Stefan</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49272.2/1/Banholzer_2-13q9e8ietk8797.pdf"/>
    <dc:contributor>Banholzer, Stefan</dc:contributor>
    <dcterms:abstract xml:lang="eng">In the present paper a multiobjective optimal control problem governed by a linear parabolic advection-diffusion-reaction equation is considered. The optimal controls are computed by applying model predictive control (MPC), which is a method for controlling dynamical systems over long or infinite time horizons by successively computing optimal controls over a moving finite time horizon. Numerical experiments illustrate that the proposed solution approach can be successfully applied although some of the assumptions made in [1,2] can not be guaranteed for the studied tests.</dcterms:abstract>
    <dc:contributor>Grüne, Lars</dc:contributor>
    <dc:contributor>Fabrini, Giulia</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49272.2/1/Banholzer_2-13q9e8ietk8797.pdf"/>
    <dcterms:title>Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fabrini, Giulia</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-18T09:54:22Z</dcterms:available>
    <dc:creator>Grüne, Lars</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49272.2"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-18T09:54:22Z</dc:date>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2020-06-18 09:45:59
2020-04-23 12:10:29
* Ausgewählte Version