Publikation: Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation
Lade...
Dateien
Datum
2020
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematics. MDPI AG. 2020, 8(5), 777. eISSN 2227-7390. Available under: doi: 10.3390/math8050777
Zusammenfassung
In the present paper a multiobjective optimal control problem governed by a linear parabolic advection-diffusion-reaction equation is considered. The optimal controls are computed by applying model predictive control (MPC), which is a method for controlling dynamical systems over long or infinite time horizons by successively computing optimal controls over a moving finite time horizon. Numerical experiments illustrate that the proposed solution approach can be successfully applied although some of the assumptions made in [1,2] can not be guaranteed for the studied tests.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
multiobjectice optimization; multiobjective optimal control; model predictive control; evolution problems; advection-diffusion equations
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BANHOLZER, Stefan, Giulia FABRINI, Lars GRÜNE, Stefan VOLKWEIN, 2020. Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation. In: Mathematics. MDPI AG. 2020, 8(5), 777. eISSN 2227-7390. Available under: doi: 10.3390/math8050777BibTex
@article{Banholzer2020Multi-49272.2, year={2020}, doi={10.3390/math8050777}, title={Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation}, number={5}, volume={8}, journal={Mathematics}, author={Banholzer, Stefan and Fabrini, Giulia and Grüne, Lars and Volkwein, Stefan}, note={Article Number: 777} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49272.2"> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Banholzer, Stefan</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49272.2/1/Banholzer_2-13q9e8ietk8797.pdf"/> <dc:contributor>Banholzer, Stefan</dc:contributor> <dcterms:abstract xml:lang="eng">In the present paper a multiobjective optimal control problem governed by a linear parabolic advection-diffusion-reaction equation is considered. The optimal controls are computed by applying model predictive control (MPC), which is a method for controlling dynamical systems over long or infinite time horizons by successively computing optimal controls over a moving finite time horizon. Numerical experiments illustrate that the proposed solution approach can be successfully applied although some of the assumptions made in [1,2] can not be guaranteed for the studied tests.</dcterms:abstract> <dc:contributor>Grüne, Lars</dc:contributor> <dc:contributor>Fabrini, Giulia</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49272.2/1/Banholzer_2-13q9e8ietk8797.pdf"/> <dcterms:title>Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Fabrini, Giulia</dc:creator> <dcterms:issued>2020</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-18T09:54:22Z</dcterms:available> <dc:creator>Grüne, Lars</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49272.2"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-18T09:54:22Z</dc:date> <dc:contributor>Volkwein, Stefan</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt